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ABSTRACT: The present study deals with the behavior of curved-in-plane 

bridges and examines the effect of  the radius of curvature, the vehicle speed, 

the section slope (superelevation), the pavement situation and mainly the 

achievable accuracy depending on the vehicle model used. In this paper, besides 

the above parameters, the influence of loading model is studied, especially the 

models of a concentrated load, a sequence of two concentrated loads and finally 

a real vehicle where its width is taken into account where the loads are 

considered as concentrated ones. A 3-DOF model is considered to study the 

bridge, while the theoretical formulation is based on a continuum approach, 

which has been widely used in the literature to analyze such bridges.   
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1. INTRODUCTION 

 

A lot of work has been reported during the last 100 years dealing with the 

dynamic response of railway bridges and later of highway bridges, under the 

influence of moving loads. Extensive references to the literature on this subject 

can be found in the excellent Frýba’s book [1]. 

Two early contributions, in this area, presented by Stokes [2] and Zimmerman 

[3] are very interesting. In 1905, Krýlov [4] gave a complete solution to the 

problem of the dynamic behavior of a prismatic bar acted upon by a load of 

constant magnitude, moving with a constant velocity. In 1922, Timoshenko [5] 

solved the same problem but for a harmonic pulsating moving force. Another 

pioneer work on this subject was presented in 1934 by Inglis [6], in which 

several parameters were taken into account. In 1951, Hillerborg [7] gave an 

analytical solution to the previous problem by means of Fourier’s method. 

Despite the availability of high speed computers most of the methods used 

today for analyzing bridge vibration problems are essentially based on the 

Inglis’s or Hillerborg’s early techniques. Relevant publications are the ones of 
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Steuding [8] ,Honda et al [9], Gillespi [10], Green and Cebon [11], Lee [12], 

Michaltsos et al [13], Xu and Genin [14] , Foda and Abduljabbar [15], 

Michaltsos [16] and [17]. 

On the other hand, in practice,  in spite of the great number of works for over 50 

years, bridges (as also other constructions which are acted upon by dynamic 

loads) have been designed accounting dynamic loads by increasing the design 

live loads by a semi-empirical “impact factor” or “dynamic load factor”. 

Recently, there have been many programs of research, discussing the effect  of 

the characteristics of a bridge or a vehicle on the dynamic response of a bridge 

such as: the programs in U.S.A [18], in U.K. and Canada [19], in the 

Organization for Economic Cooperation and Development (O.E.C.D.) [20], in 

Switzerland [21] etc.   

Among the important studies in this field, we must especially refer to the 

important experimental research by Cantieri [22] dealing with different models 

of moving loads.  

Curved reinforced concrete  or steel bridges are very common as elements of 

highway access, ramps and interchanges, while they are often the only solution 

in special territories. 

A wide field of research is that of seismic behavior of curved bridges. 

A majority of experimental and numerical research on horizontally curved 

bridges was done in the U.S. in the late 1960s and early 1970s e.g. Mozer and 

Culver [23], Culver [24], Brennan [25]. This research continued in the 1990s 

(Yoo and Carbine [26]; Zureick et al. [27]) and was used to improve the 

American Association of State Highway and Transportation Officials 

(AASHTO) specifications concerning this topic. The aforementioned research 

was mainly related to steel bridges.  

The seismic behaviour of bridges is principally influenced by the seismic 

response of the substructures: bridge columns, abutments and foundations. In 

fact, design codes such as the Caltrans Seismic Design Criteria in California 

(Caltrans [29]) and the Eurocodes in Europe (CEN) [28] assume that the bridge 
deck remains elastic during a seismic event, and that the energy introduced by 

the ground motion is dissipated by either the substructures or specific seismic 

isolation and/or damping devices. 

Parametric analyses related to the seismic behavior of curved bridges have 

recently been carried out by Abdel-Salam and Heins [30], Wu and Najjar [31] 

and Linzell and Nadakuditi [32]. This last paper  highlighted that the radius of 

curvature had the greatest influence on the seismic response of curved steel I-

girder simply supported bridges. These papers address horizontally curved steel 

bridges. 

The present paper deals with the behaviour of curved-in-plane bridges and 

examines the effect of  the radius of curvature, the vehicle speed, the section 

slope(superelevation), the pavement situation and mainly the achievable 

accuracy  depending on the vehicle model used. 



Tassos Avraam, George Michaltsos                                                                                51 

In this precursor study besides  the above parameters, the influence of loading 

model is studied, especially the models of a concentrated load, a sequence of 

two concentrated loads and finally a real vehicle where its width is taken into 

account where the loads are considered as concentrated ones. In a later paper, 

the models of damped-mass-loads and of damped-vehicle will be studied. 

A 3-DOF model is considered to study  the bridge model, while the theoretical 

formulation is based on a continuum approach, which has been widely  used in 

the literature to analyze such bridges.   

  

2. MATHEMATICAL FORMULATION 

2.1. The equations of motion  
 

Let us consider now the deck of the bridge that is shown in Fig. 1 by the gravity 

centers’ line of its cross-sections (OS). 

The length L of the  a curved-in-plane bridge with radius of curvature R, is given 

by the relation RL , where ρ is the sectorial angle that corresponds to the 

length L. 

A random point A of the bridge can be determined by the angle . 

We assume that the distance zM between the shear center M and the gravity center 

S is very small compared to the radius R. 

The above assumption means that we accept that the torsional moment mx acts 

about the axis of gravity centers (while in reality it acts about the axis of the shear 

centers). 

 
Fig. 1:    The deck’s displacements 

 

According to the theory of curved beams with thin-walled cross-sections, the 

following equations are valid [33]: 
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where qy, qz and mx are the internal forces developed on the cross-section at 

Rx  (see fig. 1), while Jpx is the torsional mass-moment of inertia about the 

x-axis. In the present analysis, we      will proceed for the usual case where 

my=mz=0 (for the directions and axes x, y, z, see figure 1).  

For the following analysis and in order to apply the Galerkin’s procedure, we 

need a suitable set of expressions for the  v, w, φ.   

 

 

2.2. Set of expressions v, w, φ 

Considering the case of a free vibrating bridge and ignoring, for instant, the effect 

of the torsion on the vertical bending, equations (1) become: 
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Equation (2a) shows that the lateral motion is independent of the others, while 

vertical and torsional ones are coupled. Thus we put: 

)t(T)x()t,x(

)t(T)x(Z)t,x(w

)t(T)x(Y)t,x(v
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y

                                                                              (2d,e,f)      

 

2.2.1 The lateral motion 

Introducing (2d) into (2a), we conclude to the following uncoupled equations: 
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The solution of (3a) gives the eigenshapes of lateral motion: 
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2.2.2.  The vertical-torsional motion 

 Introducing (2e,f) into (2b,c) we obtain the following equations: 
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The first of equations (4) gives: 
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The second of eqs (4) becomes: 
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The above due to the first of eq.(4) becomes: 
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The solution of the above (5a) is: 
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The boundary conditions are:  0)L()0()L()0( , from which one 

can determine: 
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and finally: 

xkcosBxksinAxsinhcxsinc)x( n2nn1nn2n3n1n1n                  (6e) 
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3. THE FREE VIBRATING BRIDGE 

 

The equations for the free motion of the bridge are: 
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3.1. The horizontal motion 

The first of equations (7), is independent of the two others. 

Therefore its eigenfrequencies and shape functions are given by equations 

(3c,d,e,f). 

 

3.2. The couplet vertical-torsional motion 

In order to elaborate equations (7b,c), we are searching for a solution of the form: 
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Introducing eqns (8) into eqns (7b,c), we arrive to the following differential 
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In order to apply the Galerkin procedure we set: 
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where ai and bi  are  unknown coefficients to be determined and Zi, Φi, are 

arbitrarily chosen functions of x, which satisfy the boundary conditions. As such 

functions we choose the expressions given by eqns (4a) and (6e).  Functions Wk 

and Θk, corresponding to the eigenfrequency ωk  will be determined below.       

Introducing eqns (10) into eqns (9), multiplying the out come successively the 

first by Z1, Z2, ….,Zn and the second by Φ1, Φ2, …, Φn, and integrating from 0 to 

L, we obtain the following linear homogeneous system with unknown the 

coefficients aρi and bρi. 
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with  nto1  and  nto1 . 

Equations (11) represent a linear system of homogeneous equations with 

unknowns ia  and ib . For a non trivial solution of equations (11), the 

determinant of the coefficients of the unknowns must be equal to zero, i.e.: 

0ji                                                                                                             (12) 

from which the eigenfrequencies of the bridge can be determined. 

Neglecting the first line of equations (11) and solving the remaining equations, 

we can determine the constants )nto2i(ai  and )nto1i(bi , with respect to ai 

and thus the eigenfunctions to vertical-torsional motion of the bridge. 

 

3.3. The orthogonality conditions 

Easily, through the known process, one can determine the following orthogonality 

conditions for the eigenshapes determined according to the previous paragraphs 

3.1 and 3.2: 

 

3.3.1 For the lateral motion 
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3.3.2 For the vertical-torsional motion 

knfor

knfor0
dx)JWmW(

k

L

0
knpxkn                                                  (14) 

 

4. THE FORCED VIBRATING BRIDGE 

4.1. The horizontal motion 

The equation of motion is: 
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We are searching for a solution of the form: 
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where Yn(x) are the eigenforms of the bridge given by equ (3a) and Tn(t) the time 

functions to be determined.  Introducing (16a) into (15) we get: 
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Remembering that Yn(x) satisfies the equation of free motion (3a), the above 

becomes:  
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Multiplying the above by Yρ and taking into account the orthogonality condition 

we conclude to the following equation: 
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The solution of the above is given by the Duhamel’s integral: 
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4.2. The lateral-torsional motion 

The equations of motion are:  
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We are searching for a solution of the form: 
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where Wn and Θn are the eigenshapes of the bridge given by eqns (10a,b) and 

Pn(t) the time functions to be determined. Introducing (18a,b) into (17a,b) we get: 
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Remembering that Wn and Θn satisfy the equations of the free motion (9a,b), the 

above become: 
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Multiplying (19a) by Wρ and integrating from 0 to L, the (19b) by Θρ and 

integrating from 0 to L, and remembering that m/Jcc pxz , the above become: 
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Adding the above equations and taking into account the orthogonality condition 

we get: 
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The solution of the above (20c) is given by the Duhamel’s integral: 
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5. THE MOVING LOADS 

 

In this section we will study firstly the behavior of a curved-in-plane bridge under 

the action of a concentrated load, moving with speed  υ, and after of a vehicle 

moving with speed υ.   

In figure 2, the bridge and its cross-section for the above loading case are shown. 

Usually, a section slope φ (fig.2) exists on the curved parts of road bridges. 

Although slope φ, is important and necessary in railway bridges, it has not the 

same significant influence on road bridges, because it is always smaller than 5
o
 

(while in railway bridges it can be up to 10
o
).  

Let us see the influence of the angle φ on the allowed safe speed υ of the moving 

load. 

Symbolizing with μ the friction coefficient, the equilibrium of the horizontal 

forces gives: SingMgM
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M 2

, which concludes to the following 

inequality for the allowed speed υ: 
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Fig. 2:    The moving Load 
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The values of the coefficient of friction μ between car tires and asphalt, given by 

the relative manuals are:  

surfaceswetfor35.0
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In the plots of figure 3 one can see the influence of angle φ on the load speed υ 

for both dry and wet  deck surface for three characteristic radius of curvature 

R=50m (fig.3a), R=100m (fig.3b) and R=150m (fig.3c) 
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Fig. 3:  The influence of section slope φ on the allowed speed υ. 

( __ ) dry deck surface, (…..) wet deck surface 

\ 

In table 1 the allowed speeds in m/sec, and the achieved increase of the allowed 

speeds (in percentage) for o5 and for both, dry and wet deck surface and the 

above chosen radius are shown. 

 

TABLE  1 

 R=50 m R=100 m R=150 m 

φ 5
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0
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0
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Dry 20.25 18.80 7.7 28.80 26.80 7.4 35.10 32.90 6.6 

wet 15.10 13.20 14.4 21.30 18.65 14.3 26.10 22.90 13.9 

 

 

5.1. The concentrated moving load 

In this case the right side members of equation (4) become: 

)x(e
eR

M
egMm

)x(gMq

)x(
eR

M
q

V

H

2

Hx

z

H

2

y

                                              (23a,b,c) 

where  δ is the Dirac delta function and  α  is the position of the load P at time t. 
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5.1.1. The lateral motion 

Introducing (23a) into the right side member of equation (15), and following the 

process of paragraph 4.1, we conclude to the following equation: 
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Or finally: 
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with β and y from equation (16). 

 

5.1.2. The vertical-torsional motion 

Introducing (23b,c) into the right side members of eqns (20a,b) and following the 

process of paragraph 4.2, we conclude to the following equation: 

L

0

2
px

L

0

2

V
H

2

H

2
z

z

dxJdxZm

)t(e
eR

M
egM)t(ZgM

PP
m

c
P  , which has the 

solution: 

L

0

z
)t(

L

0

2
px

L

0

2

V
H

2

H

L

0

z
)t(

L

0

2
px

L

0

2

d)t(Sin)(e

dxJdxZm

e
eR

M
egM

d)t(Sin)(Ze

dxJdxZm

)t(ZgM
P

          (25) 

 

5.2. The moving vehicle 

Considering the vehicle of figure 4, this case of loading can be easily solved 

following the known procedure with external loads: 
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(26a,b,c) 

The first members of (26a), (26b), and the first two of (26c) are valid for 

/Lt0 , while the second members of (26a), (26b), and the third and fourth 

members of (26c) are valid for /)d2L(t/d2 .  

 

5.2.1. The lateral motion 

Introducing  (26a) into the right side member of equ (15), and following the 

process of  §4.1 we conclude to the following equation: 
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where H is the Heaviside’s unit function. 
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Fig. 4:    The moving vehicle  

 

5.2.2. The vertical-torsional motion 

Introducing (26b,c) into the right side members of eqns (17a,b) and following 

the process of §4.2, we conclude to the following equation: 
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where H is the Heaviside’s unit function. 

 

 

6. NUMERICAL RESULTS AND DISCUSSION 

 

Let us consider a curved-in-plane bridge, with length L=60 m (see fig. 4). The 

bridge is made from structural steel (isotropic and homogeneous material) with 

modulus of elasticity E=2,1x10
8
kN/m

2
, shear modulus G=0,8x10

8
kN/m

2
, 

moments of inertia Jy=0.50m
4
, Jz=8,00m

4
, torsional constant Jd=0,50m

4
, warping 

constant  Jω=0,25m
6
, mass per unit length m=1200 kg/m and mass moment of  

inertia Jpx =10200 kgm
2
. Three characteristic radius of curvature are studied: 

R=50m, R=100m, and R=150m. 

We will study the dynamic behavior of the bridge under the action of: 

a. A concentrated moving load with speed υ and magnitude gMP and  M=40 

000kg. 

b. A sequence of two concentrated loads spaced 2d with magnitude 

2/gMPP 21 . 

c. A real vehicle of dimensions 2d*2b, whose the tires are considered as 

concentrated loads. 



Tassos Avraam, George Michaltsos                                                                                65 

According to the results of table 1, the studied speeds must be less than 

sec/m35 . 

 

6.1. The concentrated moving load 

6.1.1. The lateral motion 

 The radius of curvature  

 The plots of figure 5 show the lateral vibrations of the mid-span of the bridge 

(x=L/2) for  

speeds υ =10 m/sec (fig 5a), υ =20 m/sec (fig 5b), and υ =30 m/sec (fig 5c) and 

various radii of curvature R.  
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(a) υ =10 m/sec                   (b) υ =20 m/sec                                    (c) υ =30 m/sec 

                   

Figure 5: The influence of  the radius of curvature for 

___ R=50 m,   …… R=100 m,  - - -  R=150 m 

 

As it was expected, we observe that for small R the developed deflections are 

much greater than the ones for great R. These differences amount: 

Between R=100 and R= 150 the difference amounts to about 150% 

Between R=50 and R= 100 the difference amounts to about 250% 

Between R=50 and R= 150 the difference amounts to about 400% 

These percentage differences are slightly affected by the value of speed υ.  

 

 The eccentricity 

The plots of figure 6 show the lateral vibrations of the mid-span of the bridge 

(x=L/2) for υ =30 m/sec, radii of curvature R=50m(fig 6a), R=100m (fig 6b) and 

R=150m (fig 6c), for various eccentricities eH.  
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      (a)  R=50m                               (b) R=100 m                               (c)  R=150 m 

 

Figure 6: The influence of  the eccentricity for υ = 30 m/sec and 

___ eH=3 m,   …… eH=0 m,  - - -  eH= -3 m 
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From these plots we see that as the R increases the influence of the eccentricity eH 

on the bridges’ deflections decreases. For R=50 and υ = 30 the difference 

between eH=3 and eh=-3 amount to about 15%, while for R=150 and υ = 30 the 

difference between eH=3 and eh=-3 amount to about 3% 

 

 The speed 

Finally in figure 7 we see the deflections of the mid-span of the bridge for 

R=50, eH=0 and various values of speed. 
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Figure 7: The influence of  the speed for R=50 m, eH=0 m and 

υ =10m/sec  ( ___ ),  υ =20m/sec (……),  υ =30m/sec ( - - - )  

 

 

 

6.1.2. The vertical-torsional motion 

 The speed 

The plots of figure 8 show the vertical-torsional vibrations of the middle of the 

bridge (x=L/2) for R=50m, eccentricity eH=3 m, and   eV=1.20 m. 
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Figure 8: The influence of the speed for  R=50m,  eH=3 m,  eV=1.20 m, and 

υ =10m/sec  ( ___ ),  υ =20m/sec (……),  υ =30m/sec ( - - - )  
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The plots of figure 9 show the vertical-torsional vibrations of the mid-span of the 

bridge (x=L/2) for R=100m, eccentricity eH=3 m, and   eV=1.20 m. 
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Figure 9: The influence of the speed for  R=100m,  eH=3 m,  eV=1.20 m, and 

υ =10m/sec  ( ___ ),  υ =20m/sec (……),  υ =30m/sec ( - - - )  

 

 

The plots of figure 10 show the vertical-torsional vibrations of the mid-span of 

the bridge (x=L/2) for R=150m, eccentricity eH=3 m, and   eV=1.20 m. 
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Figure 10: The influence of the speed for  R=150m,  eH=3 m,  eV=1.20 m, and 

υ =10m/sec  ( ___ ),  υ =20m/sec (……),  υ =30m/sec ( - - - )  

 

From the above plots we ascertain that for both deformations (deflection and 

rotation angle), the influence of the speed is greater in bridges with small radius 

of curvature than in bridges with great ones. For the cases studied this influence 

amounts to about 60 – 70% for R=50 m decreasing to about 10 – 20% for 

R=150 m.  

 

 The radius of curvature  

The plots of figure 11 show the vertical-torsional motion of the middle of the 

bridge (x=L/2) for  speed υ =20 m/sec, eH=1.50 m, eV=1.20 m, and various radii 

of curvature.  
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Figure 11: The influence of  radius of curvature for υ = 20 m/sec, eH=1.5m, eV=1.2m and 

R=50m ( ___ ), R=100m (….. ), R=150m ( - - - ) 

 

 The eccentricity 

 The plots of figure 12 show the vertical-torsional vibrations of the mid-span of 

the bridge (x=L/2) for R=50m,  υ = 30 m/sec, and various values of eccentricity. 
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Figure 12: The influence of  eccentricity for υ = 30 m/sec, R=50 m, and 

___ eH=3 m,   …… eH=0 m,  - - -  eH= -3 m 

 

The plots of figure 13 show the vertical-torsional vibrations of the mid-span of 

the bridge (x=L/2) for R=100m,  υ = 30 m/sec, and various values of eccentricity. 
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Figure 13: The influence of  eccentricity for υ = 30 m/sec, R=100 m, and 

___ eH=3 m,   …… eH=0 m,  - - -  eH= -3 m 
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The plots of figure 14 show the vertical-torsional vibrations of the mid-span of 

the bridge (x=L/2) for R=150m,  υ = 30 m/sec, and various values of eccentricity. 
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Figure 14: The influence of  eccentricity for υ = 30 m/sec, R=150 m, and 

___ eH=3 m,   …… eH=0 m,  - - -  eH= -3 m 

 

From the plots of figure 12 we observe that for eccentricity eH=-3m, both 

deformations (deflection and rotation angle) are negative. This, was expected for 

the rotation angle, but not for the deflection. However this deflection is referred 

to the axis of the cross-section, while the deflection of the point where the load is 

applied is:  

0005.00055.0)002.0()3(0005.0 .  

 

6.2. The moving vehicle 

6.2.1. The lateral motion 

 The model influence 

The plots of figure 15 show the lateral motion of the mid-span of the bridge 

(x=L/2), for  υ = 30 m/sec, eH=3.00m, eV=1.20m and various values of 

curvature.  
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(a) R=50 m                              (b)  R=100 m                              (c)  R=150 m   

 

Figure 15: The influence of  the used model for υ = 30 m/sec, eH=3.00m, eV=1.20m, for a 

vehicle with wheelbase 2d=10m ( ___ ), one concentrated load ( - - - ) 

 

From the above plots we see that the radius of curvature has little effect on the 

lateral vibrations of the bridge. This effect ranges from 6 to 10%.  
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 The influence of  wheelbase 2d 

The plots of figure 16 show the lateral motion of the mid-span of the bridge 

(x=L/2), for R=50m,  υ = 30 m/sec, eH=3.00m, eV=1.20m and various values of 

the vehicle’s wheelbase  2d. 
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Figure 16:  The influence of the vehicle’s wheelbase for  R=50m,  υ = 30 m/sec, eH=3.00m, 

eV=1.20m  and  d=3m ( __ ), d=5m ( _ _ ), d=7m (- - - ) and d=0m ( …. ) 

 

 

The plots of figure 17 show the lateral motion of the mid-span of the bridge 

(x=L/2), for R=100m, υ =30 m/sec, eH=3.00m, eV=1.20m and various values of 

vehicle’s wheelbase  2d. 
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Figure 17:  The influence of the vehicle’s wheelbase for  R=100m,  υ = 30 m/sec, eH=3.00m, 

eV=1.20m  and  d=3m ( __ ), d=5m ( _ _ ), d=7m (- - - ) and d=0m ( …. ) 
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The plots of figure 18 show the lateral motion of the mid-span of the bridge 

(x=L/2), for R=150m,  υ = 30 m/sec, eH=3.00m, eV=1.20m and various values of 

vehicle’s wheelbase  2d. 
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Figure 18:  The influence of the vehicle’s wheelbase for  R=150m,  υ = 30 m/sec, eH=3.00m, 

eV=1.20m  and  d=3m ( __ ), d=5m ( _ _ ), d=7m (- - - ) and d=0m ( …. ) 

 

From the above plots we see that the vehicle’s wheelbase has small influence on 

the lateral vibrations of the bridge. This effect ranges from 4 to 8%.  

 

6.2.2. The vertical-torsional motion 

 The model influence 

The plots of figure 19 show the vertical-torsional motion of the mid-span of the 

bridge (x=L/2), for R=50m,  υ = 30 m/sec, eH=3.00m, eV=1.20m for the three 

models of loading, one model of a real vehicle of dimensions 2d * 2b, one 

model consisted by a sequence of two concentrated loads and one model 

consisted by one concentrated load. We observe that for this value of R the 

differences are great. 
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Figure 19:  The vertical-torsional motion of the mid-span of the bridge (x=L/2), for R=50m,   

υ = 30 m/sec, eH=3.00m, eV=1.20m, d=5m for the three models of loading 

( __ ) the real vehicle,  (- - -) sequence of two loads, ( …. ) one concentrated load 
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The plots of figure 20 show the vertical-torsional motion of the mid-span of the 

bridge (x=L/2), for R=100m,  υ = 30 m/sec, eH=3.00m, eV=1.20m, for the three 

models of loading, one model of a real vehicle of dimensions 2d * 2b, one 

model consisted by a sequence of two concentrated loads and one model 

consisted by one concentrated load. 
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Figure 20:  The vertical-torsional motion of the mid-span of the bridge (x=L/2), for R=100m,   

υ = 30 m/sec, eH=3.00m, eV=1.20m, d=5m  for the three models of loading 

( __ ) the real vehicle,  (- - -) sequence of two loads, ( …. ) one concentrated load 

 

The plots of figure 21 show the vertical-torsional motion of the mid-span of the 

bridge (x=L/2), for R=100m,  υ = 30 m/sec, eH=3.00m, eV=1.20m for the three 

models of loading, one model of a real vehicle of dimensions 2d * 2b, one 

model consisted by a sequence of two concentrated loads and one model 

consisted by one concentrated load. 
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Figure 21:  The vertical-torsional motion of the mid-span of the bridge (x=L/2), for R=150m,   

υ = 30 m/sec, eH=3.00m, eV=1.20m, d=5m  for the  three models of loading 

( __ ) the real vehicle,  (- - -) sequence of two loads, ( …. ) one concentrated load 

 

 

From figure 19, we see that for small radii of curvature the choice of the right 

model affects the results too much. We see also that the model of a sequence of 
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two concentrated loads leads to inaccurate results. This error amounted to about 

100%. 

From the plots of figures 20 and 21 we see that always the above model of a 

sequence of two loads is most inaccurate with errors amounted from 15 to 25%. 

 

 The influence of wheelbase  2d 

The plots of figure 22 show the lateral motion of the mid-span of the bridge 

(x=L/2), for R=50m,  υ = 30 m/sec, eH=3.00m, eV=1.20m and various values of 

vehicle’s wheelbase  2d. 
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Figure 22: The influence of the vehicle’s wheelbase for  R=50m,  υ = 30 m/sec, eH=3.00m, 

eV=1.20m  and  d=3m ( __ ), d=5m ( _ _ ), d=7m (- - - ) and d=0m ( …. ) 

 

 

The plots of figure 23 show the lateral motion of the mid-span of the bridge 

(x=L/2), for R=100m,  υ = 30 m/sec, eH=3.00m, eV=1.20m and various values of  

vehicle’s wheelbase 2d. 
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Figure 23:  The influence of the vehicle’s wheelbase for  R=100m,  υ = 30 m/sec, eH=3.00m, 

eV=1.20m  and  d=3m ( __ ), d=5m ( _ _ ), d=7m (- - - ) and d=0m ( …. ) 

 

 

The plots of figure 24 show the lateral motion of the mid-span of the bridge 

(x=L/2), for R=150m,  υ = 30 m/sec, eH=3.00m, eV=1.20m and various values of 

vehicle’s wheelbase  2d. 
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Figure 24:  The influence of the vehicle’s wheelbase for  R=150m,  υ = 30 m/sec, eH=3.00m, 

eV=1.20m  and  d=3m ( __ ), d=5m ( _ _ ), d=7m (- - - ) and d=0m ( …. ) 

 

 

From the above plots we see that for small radii of curvature (R=50m), the 

model of one concentrated load is the most inaccurate (error ~20%). The other 

three models give somewhat similar results. 

For greater radii of curvature (R=100 or 150m), all models give similar results 

as regarding the maximum deformations. Existing differences amount to about 

3 to 6%. Note that each model gives a different view of the bridge 

deformations. For example the models with d=3 and d=5m give one maximum 

while the ones with d=0 and d=7m give two maxima.  

 

7. CONCLUSIONS 

 

From the chosen data of bridges’ characteristics and of moving loads’ models, 

one can draw the following conclusions: 

1. A mathematical model for the study of curved-in-plane bridges is presented. 

2. As for the surface conditions of the deck, we see that for wet surfaces the 

value of a safe speed decreases dramatically (24 to 27% for R=50 to 150 m).  

The use of section slope (super-elevation) improves significantly the value 

of the allowed safe speed (~16%). 

3. The radius of curvature strongly affects the lateral motion. 

4. For the vertical-torsional motion and for small values of radius of curvature, 

sometimes, negative deflections of the bridge’s axis are computed, while the 

deflections of the points where the load applies have positive values much 

higher than the ones of the bridge’s axis.    

5. The above mentioned deformations are affected by the eccentricity of the 

applied load. This influence amounts from 3 to 15%. 

6. In bridges with small radii of curvature, models corresponding to actual real 

models of loading should be employed. In this case it is recommended to 

avoid the use of one concentrated load model, because the calculated error is 

high. 
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7. Finally, as for the distance of vehicles’ axles, the use of the real data is 

critical not only to determine the exact value of the maximum deflections but 

also to achieve the right view of the bridges’ deflections. 

8. For L/2d >~ 7, the resulting maximum values of deformations are not 

severely affected by the use of any loading model. 
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