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ABSTRACT: This paper deals with the linear dynamic response of a reclining 

bridge subjected to a load of constant magnitude which moves under the action 

of its weight, while the bridge goes up. This analysis focuses attention on the 

effect of the bridge’s angular speed on its behavior under the action of a single 

load (one-axis load), or of a real vehicle model (two-axis load) while the 

influence of the damping of the beam is taken into account. The so produced 

oscillations are compared to those caused by a moving load passing the bridge 

with the maximum speed which get the load during the bridge’s turning up. A 

variety of numerical results and diagrams allows us to draw important 

conclusions for structural design purpose. 
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1. INTRODUCTION    
The determination of the dynamic effect of moving loads on elastic structures 

and, particularly, on bridges is a very complicated problem. This multi-

parameter problem has been studied by many researchers in order to present 

reliable solutions. 

After the first approximate solutions by Stoke [1], Zimmermann [2], Krylov [3], 

Timoshenko [4], and Lowan [5], a lot of researchers studied the complete 

problem including both parameters affecting mainly the dynamic behavior of a 

beam i.e. the mass of the girder and the mass of the moving load acting on the 

beam simultaneously [6 to 9]. 

The problem of the dynamic response of bridges under the action of moving 

loads is reviewed in detail by Timoshenko [10] and later by Kolousek [11]. One  

should also mention the excellent monograph on this subject by Fryba [12] and 

also his studies on the effect of the constant speed and damping on the response 

of a beam [13, 14]. 

Many investigators studied a lot of parameters usually neglected but affecting, 

same times significantly, the dynamic behavior of a bridge. 

One can mention, for example, the type of the vehicle by Veletsos and Huang 

[15], the mass of the moving load by Michaltsos at al. [16], the constants of the 

springs and dampers by Fertis [17], the bridge’s uneven deck by Abdel-Rohmal 
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and Al Duaij [18], Michaltsos [19, 20], the centripetal and Coriolis forces by 

Michaltsos [21], the critical train’s speed by Michaltsos and Raftoyiannis [22].  

Although the influence of a variable speed is studied in detail [23], and also the 

influence of the inclination of a beam [24, 25], the combination of both 

parameters that appear in a declining bridge is an interesting case.   

There is a lot of papers dealing mainly with reconstruction [26], monitoring 

[27], or design of bascule (reclining) bridges [28], and also the behavior of the 

deck pavement under different conditions [29, 30], while only a little of these 

papers study the dynamic behavior under seismic forces (as for example [31]). 

The present paper examines the influence of the angular speed of a declining 

bridge subjected to the action of a load or of a vehicle moving under the action 

of its weight on a turning up bridge. The so produced deformations are 

compared to those caused by a moving load on the same bridge at rest. 

The current operation codes are very strict. Thus, such a scenario is an 

unrealistic one. Nevertheless there are some cases of accidents occurring, due to 

violation of the codes or human negligence. 

Having as purpose the study of the problem itself and its effect on the bridge’s 

behavior, we will consider a bridge deck with prismatic cross-section, constant 

along the bridge-deck length, instead of the usually used one with changed 

cross-section along the bridge length. The above does not affect the generality 

of the present study. 

Two cases are considered. Firstly the concentrated load and secondly the 

vehicle (with wheelbase equal to 2d), which both are motionless at t = 0 and 

start to move when the bridge starts to go up. The so-produced oscillations are 

compared to those caused by a moving load passing the bridge with the 

maximum speed which gets the load during the bridge’s turning up. 

The approach is based on the Euler-Bernoulli’s beam theory.  

At a first view, the problem seems simple, but the resulting equations contain 

strongly non-linear terms. The so gathered strongly non-linear equations are 

solved using the Duhamel’s and the Euler’s gamma integrals, namely using the 

integrals of the inverse error functions (Gaussian Integrals). 

For the determination of the above integrals, it is proposed a easier way, based 

on the simulation of some terms with simple algebraic and logarithmic 

functions that one can easily integrate. 

A variety of numerical results and diagrams allows us to draw important 

conclusions for structural design purpose. 

 

2. MATHEMATICAL FORMULATION 
Let us consider now the declined bridge, shown in figure 1, composed by two 

cantilever beams of length ℓ, having a prismatic cross-section with constant 

mass per unit length m, flexural rigidity EI and damping coefficient c, made 
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from linear, homogeneous and isotropic material. At the instant t=0, there is a 

load (or a vehicle) F (of mass M) at the edge B of the left bean (fig. 1). 

The bridge can go up, turning around A with angular speed φο.  

At time t, the bridge will rotate by angle  

to                                                                                                      (1.a) 

 
Figure 1: Sketch of a reclined bridge 

 

Therefore the load or the vehicle, according to the Alembert principle will start 

moving towards the left end of the bridge with acceleration: 
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Finally the travelled distance will be dtds , or: 
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If the load F travels the distance (ℓ-so) in time to (where so is the distance of the 

initial position of the load F from the end B) will be: 
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Solving the above trigonometric equation (through a graphical or arithmetical 

way), one can determine the needed time passage to. 

Finally the needed time for the complete pull up of the bridge is: 
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d
2

2/
t                                                                                             (1.f) 

 

 



12                                                                        A Special Problem of Reclining Bridges 
 

2.1   The concentrated load 

The simplest and more usual case is the one of a moving load F without 

consideration of inertia forces (like mass, or centripetal and Coriolis forces, the 

influence of which has been already studied in [16, 21]). The equation of 

motion of a reclined bridge under the action of a moving load F is (see fig. 1): 

 )sx(V)t,x(wm)t,x(wc)t,x(wIE       or 

)sx(tcosF)t,x(wm)t,x(wc)t,x(wIE o                             (2.a) 

where )ax( is the Dirac delta function. 

A series solution of equation (2.a) in terms of linear normal modes can be 

sought in the form: 

 
n

nn

n

n )t(T)x(X)t,x(w)t,x(w                                                        (2.b) 

where Xn(x) is the shape functions of a cantilever beam, given by many 

technical books as for example by [32], and Tn(t) are time functions under 

determination. 

Introducing (2.b) into (2.a), we get:    
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Xn satisfies the equation of the free motion 0XmXIE n
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nn , the above 
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Multiplying the latter by Xρ, integrating over the domain and considering the 

orthogonality condition, the differential equation of the ρ
th
 mode of the 

generalized deflection can be written as: 
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where ωρ is the ρ
th
 eigenfrequency of the freely vibrating cantilever. 

The solution of the above is given by the Duhamel’s integral: 



Tassos Avraam                                                                                                                13 

22

0

2

t

0

o2
oo

o
)t(

t

,
m2

c
,dxXm:where

d)t(sin)sin
gg

(Xcose
gM

)tcosBtsinA(e)t(T





 (2.e) 

In order to determine the integral of the above eq (2e), we express sinφοt with a 

series 
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The above integral, can be find using the Euler’s gamma integrals: 
1z

oz

t1a
1o dtet)z,z,a( , namely using the integrals of the inverse error 

functions (Gaussian Integrals). 

There are also different simplest methods, but with the same accuracy, for the 

determination of the above integral. The simplest of them is the simulation of 

the terms that compose the shape function, with simple algebraic and 

logarithmic functions that one can easily integrate. 

Finally the factors Αρ and Βρ are determined through the use of the initial 

conditions: 
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taking into account that, at the starting of the rotation of the bridge, the load F is 

applied on the point B (see fig. 1) and therefore the bridge gets static deflection 

only.  

 

2.2 The real vehicle 

Let us consider now the biaxial vehicle of figure 2, having wheelbase equal to 

2d and distance of its gravity center S from the bridge’s surface equal to h. The 

mass of the vehicle is M, equally distributed on its two axes. Finally we neglect 

the vehicle’s rotatory mass of inertia. 
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We assume that at t=0, the front axis of the vehicle is located on point B and 

that for a bridge at rest (φ=0), the load F=Mg is divided equally between the 

two axles of the vehicle. 

 
Figure 2:  The real vehicle 

 

The forces F1 and F2 are: 
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and because:  
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they can be expressed as follows: 
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The back wheel will arrive first on A at time t1 given by the solution of the 

equation: 
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Analogously, the front wheel will arrive on A at time t2 given by the solution of 

the equation: 
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The analogous of (2.a) equation, for the vehicle of fig. 2 will be:  
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A solution is sought with the form: 
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n )t(T)x(X)t,x(w)t,x(w                                                         (4.b) 

where Xn(x) is the shape functions of a cantilever beam, and Tn(t) are time 

functions under determination. 

Following a similar procedure like the one of §2.1, we conclude to the 

following equation: 
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The solution of the above equation is given by the Duhamel’s integral: 
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where ,,  are given by eq (2.e). 

the above integrals can be determined as in §2.1. 

Finally the coefficients Αρ and Βρ  are determined by the initial conditions: 
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2.3 Moving load on a bridge at rest 

2.3.1 The concentrated load 

We consider the load F, which enters the bridge from point A and moves with 

constant speed υ. 

Then, if F is the only dynamic load applied on the bridge, the equation of motion 

will be: 

)x(F)t,x(wm)t,x(wc)t,x(wIE                                             (5.a) 

where α is the position of the load F on the beam at time t. 

We shall seek a solution in the form of separate variables such as: 

n

nn )t(T)x(X)t,x(w                                                                            (5.b) 

where Xn is the n
th
 shape function of the cantilever beam and Tn the corresponding 

time function, to be determined. Following the same procedure like the one of §2, 

we arrive to the following equation for the ρ
th
 time function: 
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Figure 3:   Load on the non-moving bridge 

 

The solution of the above is given by the Duhamel’s integral: 
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2.3.2 The real vehicle  

We consider now the vehicle of figure 4, which enters the bridge from point A and 

moves with constant speed υ.  Then, the equation of motion will be: 

)d2x(F)x(F)t,x(wm)t,x(wc)t,x(wIE 21
              (6.a) 

Seeking again for a solution in the form of separate variables such as: 

 

 
Figure 4:  Vehicle on the non-moving bridge 
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and applying the same procedure like the one of §2, we arrive to the following 

equation for the ρ
th
 time function: 
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3. NUMERICAL RESULTS AND DISCUSSION 
We consider the reclining bridge of figure 1, with the following data:  ℓ=30m, 

I=0.04m
4
, m=400 kg/m, c=1500 Nsec/m. 

We will study the behavior of the bridge for the following three angular speeds: 

sec/rad10.0and,08.0,06.0o .  

As for the loads, we will study firstly the case of a concentrated load F=200 kN 

and after the case of a beaxial vehicle having wheelbase 2d=6m, h=1.5m and 

F=200 kN, and of a beaxial vehicle with wheelbase 2d=3m, h=1.5m and 

F=40kN. 

 

3.1  The concentrated load 

 

The time passages of the load F for each one angular speed are determined from 

equation (1.e) with so=0, as follows: 

                  angular speed:  φο= 0.06 rad/sec,   time passage:  to=6.712 sec 

                  angular speed:  φο= 0.08 rad/sec,   time passage:  to=6.106 sec 

                  angular speed:  φο= 0.10 rad/sec,   time passage:  to=5.675 sec 

Applying the formulae of §2.1, for a load F=200 kN, we obtain the diagrams of 

fig.3, which show the vibrations of the bridge from o2/tto0t , when 

the bridge becomes vertical. For t > to the bridge vibrates freely. 

From the diagrams of figure 5 we see that the dynamic deflections are ~19% 

greater than the static ones. We observe also that at the beginning of the motion, 

the deflections are almost the same for any speed, while, after some time, the 

lower angular speeds produce greater deflections.  

Finally the bridge stops to vibrate free, before to come to its final vertical 

position. The time tp needed for the complete pull up of the bridge is 

10.0for,701.15t op , 08.0for,635.19t op  and 

06.0for,180.26t op . 

 

3.2    The real vehicle  

 

We will study the behavior of a bridge, under the action of a real vehicle, 

comparing simultaneously the bridge’s behavior with the one under the action 

of a concentrated load of equal magnitude. 

We note that from now on we will continue keeping only the angular speed φο= 

0.06 rad/sec, because, according to the previous paragraphs, this speed produces 

the worse dynamic behavior.  

 

For a vehicle of weight F=200 kN,  2d=6.0m and h=1.5m we obtain the 

following diagrams of figure 6. 
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Figure 5:   Oscillations of the end B of the bridge under the action of a moving load  

for different angular speeds ___  φο=0.06,    _ _ _  φο=0.08,   - - -  φο=0.10 rad/sec 
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Figure 6:  Oscillations of the end B of the bridge turning up with angular speeds φο=0.06,  

under the action of a the real vehicle with great wheelbase ( __ ),   or of a the concentrated  

load ( - - -). 
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Figure 7:   Oscillations of the end B of the bridge turning up with angular speeds φο=0.06,  

under the action of a the real vehicle with small wheelbase ( __ ),   or of a the concentrated  

load ( - - -). 

 

For a vehicle of weight F=40 kN,  2d=3.0m and h=1.5m we obtain the  

diagrams of figure 7. 

 

3.3 Loads on a bridge at rest 

3.3.1 The concentrated load 

Let us consider now the studied bridge at rest. 

At t=0, the load of §3.1 (F=200 kN), enters the bridge with constant speed equal 

to )tcos1(
g

oo

o

 , with sec712.6tandsec/rad06.0 oo . The above 

considered speed is the one that has the load at to=6.712 sec, when exits the 

bridge (see §3.1). 

Applying equation (5.d) we obtain the plot of figure 8, where are also drawn the 

oscillations of the reclined bridge, gathered in §3.1 for  sec/rad06.0o . 

 

One can easily ascertain that the produced oscillations in the case of the reclined 

bridge, compared to those produced by a load moving on the bridge at rest are 

~20% greater 20100
20.0

20.024.0
%. 
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Figure 8:   Oscillations of the end B of the bridge turning up with angular speeds φο=0.06 ( __ ),  

compared to those produced by a moving load (- - - ).  

 

 

3.3.2 The real vehicle 

Considering again the bridge at rest, the vehicle of §3.2 (with 2d=6m), enters 

the bridge with constant speed equal to )tcos1(
g

oo

o

 , with 

sec712.6tandsec/rad06.0 oo . The above considered speed is the one 

that has the vehicle at to=6.712 sec, when exits the bridge (see §3.2). 

Applying equation (6.c) we obtain the plot of figure 9, where are also drawn the 

oscillations of the reclined bridge, gathered in §3.2 for  sec/rad06.0o . 
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Figure 9:  Oscillations of the end B of the bridge turning up with angular speeds φο=0.06 ( __ ),  

compared to those produced by a real vehicle  (- - - ).  
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One can easily ascertain that the produced oscillations in the case of the reclined 

bridge, compared to those produced by a real vehicle moving on the bridge at 

rest are ~20% greater 40100
15.0

15.021.0
%. 

 

4. CONCLUSIONS 

From the results of the model considered, one can draw the following 

conclusions: 

1. The real vehicle model is, of course, more accurate than the one of the 

concentrated load. 

2. At the beginning of the bridge pull up, the dynamic deflections are, for any 

angular speed, practically equal, while after some instants, the lower angular 

speeds produce greater deflections. 

3. For small wheelbases (with 2d< ℓ/10), the results are similar to the ones 

produced by a concentrated load with equal magnitude. This fact is also 

pointed out in [16, 21]. 

4. The dynamic deflections for concentrated loads or vehicles with small 

wheelbase are ~19% greater than the static ones, but this difference becomes 

small or negligible for great wheelbases (with 2d> ℓ/5). 

5. After the load’s exit, the bridge vibrates freely. This last motion ends before 

the complete pull up of the bridge.    

6. The each time codes in force have to take into account the fact that the 

produced oscillations by a load or vehicle rolling freely on a turning up 

bridge, are significantly greater than the ones produced by the same load or 

vehicle moving on the bridge at rest.  
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