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ABSTRACT: To overcome the drawbacks of existing design methods for 

location of arch bracings in arch bridges, a systematic topology optimization 

based approach for identifying the optimum location of arch bracings is proposed 

in this paper. The accuracy and efficiency of the proposed method is 

demonstrated through a numerical example. 
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1 INTRODUCTION 
Arch bridges are one of the oldest types of bridges and have great natural 

strength. However, they can be subjected to a loss of stability under combined 

loadings. One common and cost-effective approach to increasing the buckling 

loads of arch bridges is the addition of arch bracing, which supplements the 

rigidity of base structures by increasing their moment of inertia of cross-sections. 

The design of arch bracings involves the determination of the location of the 

added arch bracings. To obtain the maximum advantage from the added arch 

bracings, the location of the added arch bracings should be placed optimally.      

Traditionally an initial feasible location of arch bracings is efficiently 

designed by following some heuristic design rules. However, there exist some 

design situations, with special loading conditions or structural singularities for 

which these simple design rules cannot be applied. Moreover, the design 

procedure does not seem to be optimal. The location of arch bracings obtained 

was often improved by the designer in a later stage of the process of obtaining the 

final design. In these cases it is necessary to use a more direct approach in order 

to automatically identify the optimal location of arch bracings with minimum 

designer intervention.   

The parametric analysis-based design method has been proposed by Ney et al. 

[1] as a rational tool for identifying the optimal location of arch bracings. 

Unfortunately, extensive computational effort may be required to obtain the 
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optimal location of arch bracings if the parametric analysis is repeated for every 

change in location of arch bracings.   

To overcome these difficulties and to increase efficiency in identifying the 

optimal location of arch bracings, the application of the topology optimization 

procedure, which has received considerable attention in recent years, has been 

introduced as an alternative approach. Topology optimization is a tool that can be 

used to find optimal layout of the structural elements in a given design domain. 

The application of the topology optimization to shell/plate structures has been 

studied by a considerable number of investigators including Diaz and Kikuchi 

[2], Ma and Kikuchi [3], Yang and Chahande [4] and Lam and Santhikumar [5].  

However, to the authors’ knowledge, its application to an optimal location 

problem of arch bracings in an arch bridge has not been reported.    

The objective of this paper is to propose a systematic topology optimization 

method to deal with the problem of optimizing location of arch bracings in an 

arch bridge to maximize buckling load. The optimum location problem is 

formulated as a nonlinear mathematical programming problem because the 

objective function in general is a nonlinear function of the design variables 

representing the location of arch bracing. A numerical example is given to show 

the efficiency and accuracy of the present method. It is found that the proposed 

method can be an alternative useful tool for engineering applications.  

  

1 PROBLEM STATEMENT OF OPTIMAL LOCATION OF 

ARCH BRACINGS 
The optimal location problem is to find a design variable vector representing 

location of arch bracings to maximize the buckling load of arch bridges subjected 

to the design constraints that are imposed as inequality constraints on design 

variables. The optimal location problem may be correspondingly stated as 

follows: 

Maximize )V(Pi , k,...,1i                                       (1) 

Subjected to jjj UVL , n,...,1j                      (2) 

where )V(Pi  is the i-th buckling load of arch bridges. Here we assume that iP  is 

in ascending order, i.e., .....PPP 321 General speaking, in application the 

lowest buckling load 1P  receive the most interest, whereas the higher bucking 

loads only have a theoretical interest, hence are not important from the designer’s 

point of view; V is the design variable vector representing location of arch 

bracings; jV  is the nodal coordinates of the finite element model specifying the 

location of the j-th arch bracing; jL  and jU  are the lower and upper bounds of 

the location of arch bracing, respectively. k  and n  are the total number of 
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buckling modes to extract and the total numbers of arch bracings in arch bridges, 

respectively.  

Not that the above optimization problem can be transformed into the 

following form: 

Minimize )V(R i ,  k,...,1i                                    (3) 

Subjected to jjj UVL ,  n,...,1j                      (4) 

where 
)V(P

1
)V(R

i

i .This is a standard minimization problem with bound 

constraints, which can be solved by the proposed method discussed next. 

 

2 THE PROPOSED SOLUTION METHOD FOR OPTIMAL 

LOCATION PROBLEM OF ARCH BRACINGS 

2.1 Principle 
The proposed method is a hybrid method, consisting of penalty function method 

(PFM), finite element method (FEM) and the first-order method (FOM). The 

method is based on three key concepts: (1) transformation of the constrained 

location problem defined in Eq. (3) to an unconstrained location problem by 

PFM; (2) actual finite element representation of the constrained location problem 

defined in Eq. (3) by FEM; and (3) solution of the constrained location problem 

defined in Eq. (3) by FOM. 

The determination of location of arch bracing is a problem in constrained 

optimization. For the constrained optimization, finding points that satisfy all the 

constraints is often the difficult problem. One approach is to use the PFM for the 

constrained optimization. In this approach, a constrained problem is transformed 

into an unconstrained problem by using penalty functions. Two types of penalty 

functions are commonly used: interior and exterior penalty functions. In this 

paper, we use the exterior penalty function, which is considered to be the easiest 

to incorporate into the optimization process. The idea behind this algorithm is to 

penalize the objective function when it is not satisfying the constraints. By using 

the exterior penalty function, we transform the constrained problem defined in 

Eq. (3) into an unconstrained problem:  

Minimize )V(Qr)V(R)r,V( pp                                (5) 

where )V(Q is an imposed penalty function; pr is a multiplier which determines 

the magnitude of the penalty. A detailed description of the exterior penalty 

function can be found in [6]. 

Because the objective function in Eq. (5) is an implicit function of the design 

variables, the use of the proposed method may involve in evaluation of the 

implicit objective function. FEM is considered to be the most popular/reliable 
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evaluation method. In this paper, the primary purpose of applying FEM is to 

compute the value of the implicit objective function. The detailed description of 

the method can be found in [7]. However, for the sake of completeness, a brief 

description is given below. 

The objective function in Eq. (5) represents the elastic buckling problem of an 

arch bridge. In FEM the elastic buckling problem is expressed as the following 

eigenvalue problem: 

}0{}]){K[P]K([ cre                                        (6) 

where ]K[ e  is the linear elastic stiffness matrix; K is the geometric stiffness 

matrix [7]; crP is the buckling load; and  is the buckling mode shape. In this 

paper, the method of subspace iterations is used to compute the values of crP  

and . 

Once the above-mentioned constrained optimization problem is successfully 

transformed into an unconstrained problem, we can easily use any unconstrained 

optimization methods such as zero-order method and first-order method to solve 

the constrained optimization problem. In this study, we use the first-order 

method for solving the unconstrained problem defined in Eq. (5). This first-order 

method is based on the Fletcher-Reeves variant of the conjugate gradient method, 

see Ref. [6]. The key aspect of this method is finding a stepping direction, within 

the design space, and updating the vector V of design variable vector 

representing location of arch bracings according to  

nn1n sVV                                             (7) 

where  is the parameter obtained by means of a unidirectional minimization. 

Finally, the vector s  represents the stepping direction, see Ref. [6]. 

 

2.2 Procedure for the proposed method 

The procedure of the proposed method is: 

a) Define the optimization problem including the objective function, )V(P and 

design variables V . 

b) Define the initial location of arch bracing in terms of a set of design 

variables. 

c) Transform the constrained problem defined in Eq. (3) into an unconstrained 

problem using exterior penalty function 

d) Calculate the value of objective functions using FEM and evaluate the 

sensitivity of the objective functions of current design with respect to the 

design variables. 

e) Using the sensitivity information and a suitable unconstrained optimization 

algorithm, such as FOM, generate a new location of arch bracing (usually of 

higher buckling load than the previous design) which satisfies the 
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constraints. 

f) If the new location of arch bracing is not optimum, go to step 2; otherwise 

stop. 

 

3 NUMERICAL EXAMPLE 
A numerical example is presented for demonstrating how the proposed method 

can be used for finding the optimum location of arch bracings in an arch bridge 

structure. The problem selected for this purpose is of relatively small size 

consisting of only five I-type arch bracings, but the results and conclusions 

obtained from this example were the same as obtained from several other small 

and large problems. A larger problem is not being presented in this paper because 

of the huge amount of associated data. 

 

3.1 Description of the example bridge 
The example bridge studied here is a through arch bridge having a span length of 

66m. The bridge consists of twin parallel arches with a 66m span and 13.2m clear 

width. The shape of the arch bridge is parabolic and the rise to span ratio of arch 

bridge is 1:4. The arch rib is made from concrete filled steel circular section. The 

arch bridge deck system consists of two horizontal tied girder, end cross girder, 

middle cross girder and concrete deck slab. The horizontal tied girder bears not 

only the horizontal thrust generated by arch ribs but also vertical loads brought 

over by the transverse beams. In order to increase the lateral stability of the arch 

bridge, five I-type arch bracings are located symmetrically between two parallel 

arch ribs. Symmetric requirements for the location of these arch bracings are kept 

unchanged during location optimization of these arch bracings. The deck is 

suspended from the two arches by means of 24 suspenders.  

    

3.2 Formulation of optimal location problem of arch bracings in the 

example bridge 
The process of formulating this optimal location problem involves identifying 

the design variables, the objective function and the corresponding constraints, 

which are presented below. 

Design variables are independent quantities that are varied in order to achieve 

the optimum design. For the arch bracing, the design variables must identify the 

exact location. The location of each arch bracing is defined by a set of control 

points. Each of these points is defined by three cartesian coordinates ( Y,X  and 

Z ). To reduce the number of design variables, only five boundary points are 

taken as control points in this work. Namely, one arch bracing is represented by 

one boundary point. Thus, the location of the arch bracings is determined by 

three cartesian coordinates Y,X and Z  of these control points. The location of 

the arch bracings in the example arch bridge with I-type arch bracings is 
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identified by the one cartesian coordinate X  of these control points. As shown in 

Fig.1, the arch bridge model has five I-type arch bracings, and therefore, there are 

5 design variables. Due to the symmetry and the simplicity of the problem, only 2 

cartesian coordinates of the control points 1 and 2 are defined as independent 

design variables, the other 2 cartesian coordinates of control points 4 and 5 are 

symmetric with respect to the independent design variables and the last one 

cartesian coordinate of control point 3 are kept fixed. If iX  is the one cartesian 

coordinate of i-th control point, the Eq. (8) represents the vector of design 

variables.  

)X,X(V 21                                                  (8) 

Two cases are considered in the following optimization procedures: Case I: 

only one design variable of 1X  are used; Case II: all two design variables of 

)X,X( 21  are used. The initial value of design variables for Cases I and II is 

shown in Table 1. 

Objective function is the dependent variable that must be maximized. One of 

the most advantageous reasons for using the arch bracings in an arch bridge is 

their ability to increase buckling stability of the arch bridge. At the present work 

the elastic buckling load of the arch bridge is selected as an objective function. 

Constraints are dependent variables and functions of the design variables that 

constrain the design. The coordinates of control points representing location of 

arch bracings are limited in the arch bracing and must be considered as 

constraints. The location constraint is a bound constraint to ensure that no 

location violation occurs when design variables are updated. For example, when 

design variables of coordinates 1X  are considered, their value of coordinates can 

not exceed the value of coordinates 2X . Table 2 presents the lower and upper 

bounds imposed on design variables. 
 

Table 1. Initial value of design variables 

Design variable Initial value (m) 

1X  13.000 

2X  23.000 

 

Table 2. Lower and upper bounds imposed on design variables 

Design variable Lower bound (m) Upper bound (m) 

1X  0 22.9 

2X  0 32.9 
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3.3  Optimization results and discussion 
The initial and optimal designs for Cases I and II are given in Table 3. From 

Table 3, it can be seen that: (1) arch bracings have moved towards the ends of 

arch ribs to increase the buckling load of arch bridges. The final buckling loads 

for Cases I and II are increased from 6.926 to 7.016 and from 6.926 to 7.138, 

respectively. Even though these increments are not much, the main feature is to 

observe where to place arch bracings to increase or maintain the largest buckling 

load; (2) the buckling loads of the optimal designs for Cases I and II obtained by 

using the proposed method are higher than those of the initial designs. This result 

shows that the proposed method can be employed for finding optimal arch 

bracing locations in arch bridge structures; (3) the Case I optimum design is 

worse than the Case II optimum design in this example. This is due to the fact of 

having more design variables for Case 2, which means more choices in the 

optimal design space. The noteworthy difference indicates that the number of 

design variables can considerably affect the design processes. 
 

Table 3. The initial and optimal designs for Cases I and II 

Different 

design 

Case I Case II 

1X  1P  1X  2X  1P  

Initial 

design 
13.000 6.926 13.000 23.000 6.926 

Optimal 

design 
11.850 7.016 9.95 19.25 7.138 

 

In order to ensure that the optimization process converged to the global 

optimum point, the location of arch bracings was optimized using several start 

points. Table 4 shows the first selected start point and three different start points 

with their corresponding coordinates and buckling load after optimization. It can 

be seen that the maximum difference between the obtained coordinates is about 

0.4 m or 3.12% and between the buckling loads is about 0.008 or 0.11%. 

Therefore, there is confidence that the convergence to the global optimum point 

is achieved. 
 

Table 4. Location of arch bracing and buckling load obtained from different start 

points 

Start 

point 

Case I Case II 

1X  1P  1X  2X  1P  

I 11.850 7.016 9.95 19.25 7.138 

II 11.850 7.016 10.0 19.45 7.136 

III 11.850 7.016 10.15 20.20 7.131 

IV 11.850 7.016 9.95 19.15 7.139 
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4 CONCLUSIONS 
The location design of arch bracings in an arch bridge structure has been treated 

as a constrained optimization problem in which the elastic buckling load has 

been used to construct the objective function of the optimization problem. An 

efficient, accurate, and robust algorithm is developed to solve the optimization 

problem and identify the location of arch bracings by maximizing the objective 

function. The proposed algorithm integrates the concepts of the penalty function 

method, finite element method and the first-order method. Penalty function 

method is used to transform the constrained optimization problem to an 

unconstrained optimization problem. Finite element method is adopted to 

compute values of implicit objective functions. First-order method is used to 

solve the unconstrained optimization problem. An example is presented to 

demonstrate the practical application of the proposed method. The optimal 

location results obtained by using several different start points demonstrate the 

robustness of the proposed method.   
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