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ABSTRACT: This paper has two goals. Firstly to present a simplified method 

of evaluation of the additional longitudinal stresses that develop under the 

torsional response both for rectilinear and curved bridges and secondly to 

perform a comparison with the results  deduced from a finite element  

simulating the real three dimensional structure. It is proved that the simplified 

method provides a safe estimation of the response and may be used for 

preliminary design purposes. 
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1 INTRODUCTION 
Box girders constitute, generally, a good choice for the superstructure of bridges 

and in most of the cases represent the best solution of all, thanks to their 

inherent capacity to withstand, in the most efficient way, the torsional stress 

state that develops.  This state in the case of rectilinear girders is due to the 

eccentric position of traffic loading, whereas in the case of curved bridges in 

plan is already permanently present due to the girder self-weight alone, apart 

from any eccentricity of the incoming live loads. 

Although under a given torsional moment diagram in a girder no 

longitudinal stresses develop, according to the classical technical theory of 

torsion, the existing overall girder deformability as a thin walled section, leads 

generally to such stresses. These stresses are of rather negligible intensity 

according to the theory of “warping torsion” if the deformability of the cross 

section profile is prevented by some inserted transversal diaphragms along the 

girder, but in their absence –as it is always preferred in the construction– the 

existing deformability of the cross section leads to substantial longitudinal 

stresses in addition to the shear stresses developed according to the classical 

Bredt theory of torsion. It is obvious that the above longitudinal stresses have to 

be superposed with those due to the longitudinal bending moments of the girder.    

To account for this effect, formulas have been suggested on the basis of 

simulating the cross section profile as a folded plate ([1]-[3]). The present work 
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examines the accuracy of this approximation using a closer to reality simulation 

with the aid of 3D finite elements. Both rectilinear and curved girders are 

examined. The comparison shows that the formulas provide conservative 

results, are on the safe side and may be used for preliminary design purposes. 

 

1. RECTILINEAR GIRDERS 

1.1 General loading case 
In the typical box section of Fig. 1, an eccentric layout of the traffic load is 

shown. 
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Figure 1.  Resolution of eccentric load actions       

 

It may be considered that the state of stress of the girder results from the 

superposition of the fixed state (I) containing the loads with the appropriate 

nodal actions and of the state (II) containing only these opposite nodal actions 

qA and mA, together with qB and mB. 

The fixed state (I) is a trivial one and can be determined directly, so that the 

state (II) is considered only. This state - provided the section is symmetric- may 

be always split in a symmetric and an anti-symmetric part. 

The symmetric loading causes the normal longitudinal bending and will not 

be considered further; thus the interest is essentially shifted to the anti-

symmetric loading part. This one acts as a distributed torsional load 

mD = (qS /2)∙b+ms. 

In the present work only an anti-symmetric edge line load qS will be 

considered. In this case mA = mB =ms= mR=0. 

 



Stavridis et al.                                                                                                                 57 

1.2 Response due to the deformability of the profile section 
The imposed torsional loading causes deformation of the closed section, 

resulting to longitudinal bending of the section walls, which is coupled with the 

resulting transverse bending of the section profile itself ([1]). It is pointed out 

that this response comes additionally to the initially existing Bredt shear flow in 

the section walls.  

In order to investigate the influence of the deformability of the section on the 

response, the equilibrium of a cut-out girder strip of unit length is at first 

considered with the antisymmetric loads qS /2 acting at the section edges Α and 

Β (Fig. 2). It is clear that the segment is in equilibrium under the above external 

forces and the differential shear flow Δv, which is obtained as the resultant of 

the occurring Bredt shear flows on the two faces of the strip considered. 

Given that the torsional moment along the beam is MT, the shear flow is 

T

k

M
v

2F
= . From the strip equilibrium it turns out: S 0

k

q b
v

4F
 

According to the section dimensions appearing in Fig. 1 it is:  Fk = hb. 
 

 
Figure 2. Static analysis of the deformable cross section under load 

 

Obviously, the examined strip tends to deform under the forces qS /2 and Δv. 

This deformation consists essentially in a change of length of its diagonals and 

induces an additional state-of-stress for each section wall. So it is considered 

appropriate to insert a hinged strut of an infinite axial stiffness along the 

diagonal (Fig. 2). It is clear that this diagonal element develops a tensile axial 

force R (kN/m) distributed along the length of the girder. Applying now the 

opposite of the acting forces R on the respective longitudinal edges of the girder 

in the absence of the diagonal strut, it is obvious that the superposition of the 

thus resulting state-of-stress with the one of the blocked strip, will give the final 

response (Fig. 2). 

To examine this last ‘diagonal loading’ it is at first considered that the forces 

R act on a girder having hinged connections at the section edges instead of 

B A 
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monolithic ones (Fig. 3). The forces R may be resolved, equivalently, at each 

edge into the two concurring walls, therefore each one of them can be 

considered as a longitudinal beam loaded by the corresponding component, 

developing bending moments Μ0 and corresponding normal stresses σ, 

according to the classical theory of bending. However the resulting strains σ/Ε 

at the common edges of the walls with the slabs are not equal -as they should be 

- and for this reason some distributed longitudinal forces have to be additionally 

introduced along the edges of each wall, in order to establish the strain 

compatibility at each edge. It is clear that in this way the initially determined 

normal stresses σ will be changed.  

By following the above analysis, the determination of the longitudinal axial 

stresses is possible. For example, if we concentrate on the left web of the hinged 

box section, they can be determined through the classical bending formula on 

the basis of the moment Μ0. It is proved [1] that the moment of inertia Ι
* 
used is 

slightly larger than the normal value Ιw for the web by a factor k
w
 and the new 

‘neutral axis’ lies at a distance yo from the top fiber, which is somewhat less 

than its ‘normal value’, i.e. the half of the web height.  

The moment Μ0 results from the loading of the left web with the respective 

component Rw of the ‘diagonal force’ R. It is found that: Rw = R·h /s., where s is 

the length of the diagonals. Thus it is: 

                                0 0
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t h
, where t0, tw represent the thickness of  both the flanges and of 

both the webs respectively.  

The longitudinal web-beam obeys the following typical differential equation  

                                          
4

*

w4

d w
EI R

dx
                                            (2) 

where Rw and  Ι
  
represent the initial distributed web loading and the equivalent 

moment of inertia respectively, as explained above. It is noted that w represents 

the in-plane deflection of the web and it is due merely to the assumed 

deformability of the section. 

One may now account for the monolithic connection of the section walls. 

The bending deformation of the hinged section profile, under the action of 

diagonal forces R, has as a consequence the increase of its diagonal length by d 

(Fig. 3). However, this change cannot be realised without any resistance, given 

that the transverse stiffness C of the closed monolithic section profile is 

automatically mobilised. This stiffness is expressed through the relation r=dC, 
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as that diagonal pair of forces r required to produce the deformation d (C may 

be evaluated as the required diagonal force to cause a unit elongation of the 

closed frame diagonal). 

Then the tendency of the hinged section profile to be deformed by d, is 

counteracted by the resistance r of the monolithic closed frame and in this way 

the web is subjected, apart to its ‘initial’ loading Rw also to the loading of the 

component rw of the force r, obviously with the opposite sense. In the same way 

as before: rw = r∙(h /s). 
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Figure 3. Equivalent beam on elastic foundation 

    

Taking into account that the bending deformation w of the web may be 

expressed through the diagonal deformation d by the relation d wD , where 

[2,3]: 

                                              
2 2

4h 4h
D

s h b
                                         (3) 

it is found that the component wr wDC(h / s) . Using K DC(h / s)  one may 

write down the differential equation for the web beam restored to the rigid 

section profile, and  

                            
4

*

w w w4

d w
EI (R r ) R wK

dx
                           (4) 

taking finally the form:   

                                      
4

*

w4

d w
EI Kw R

dx
                                      (5) 

This equation is recognized as the typical equation of a beam on elastic 

foundation with modulus of subgrade reaction Κ. Indeed, the web is carried by 
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the elastic support offered by the profile resistance when undergoing diagonal 

deformation. 

 

2 CURVED GIRDERS 
The box girder is particularly suitable for bridges curved in plan. These bridges 

have a permanent torsional response caused even by non-eccentric loads, as e.g. 

the self-weight of the girder. 

 

2.1 Determination of bending and torsional response 
The girder is assumed to have a constant radius of curvature equal to R. The 

loading consists of a vertical distributed load q passing through the shear centre 

of the cross-section, as well as a distributed torsional moment mD. It is reminded 

here that exactly as in the case of grids, any part of the beam must satisfy three 

conditions of equilibrium, namely with respect to vertical forces, as well as with 

respect to the projections of moment vectors on two arbitrary horizontal axes. 

 
 Figure 4.  Equilibrium of a curved box girder segment        
 

The equilibrium equations of an elementary segment of length ds forming an  

angle dφ (1/R = dφ/ds), may be written in the form: 

                                
2

B T

2

d M dM1
q

ds R ds
                                      (6) 

                                 T B
D

dM M
m

ds R
                                        (7) 

If the arc span length L is much smaller than the radius of curvature R, (i.e. L /R 

< 0.3) it may be concluded that the term - (1 /R)∙(dMT /ds) on the right side of 

equation (6) is much smaller than q.  

Thus, the first equation results to: 
2

B

2

d M
q

ds
 

i.e. resembling the equilibrium relation of a rectilinear beam between the 

bending moment and the load. This means that, under the above conditions, the 

bending moments of the curved girder may be approximated by the bending 

moments of a straight beam of span L equal to the arch length of the girder. This 

equivalence, for a simply supported girder, is illustrated in Fig.5. 
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Figure 5. Static analysis of a curved beam in plan 

 

2.2 The response of the cross sectional walls 
The torsional response of the girder implies, except of the Bredt peripheral 

flow, an additional straining of the box section walls. This comes as a result 

from the way the gravity loads are introduced to the girder.  

First it should be noted that the acting compressive forces D and tensile forces Z 

in the curved top and bottom flanges respectively, cause distributed deviation 

forces q. 

 

Figure 6. Static analysis of the deformable cross section of the curved girder under load  
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It is clear from Fig.5, that the transversely distributed equal and opposite forces 

qD and qZ, which the top and bottom slab is obliged to take up respectively, 

create a torsional load per unit of curved length, being nothing else than the one 

resulted from the vectorial variation of bending moments, as it was examined in 

the previous section. It is [2]:  

  B

D

MD
q

R hR
= = ,     B

Z

MZ
q

R hR
= =  and given that D=Z we have B

D

M
q h

R
=  

Thus, it can be seen that, even without the action of an externally applied 

torsional moment mD, merely the existence of bending along a curved axis 

implies the imposition of a distributed torsional load (MB/R), according to 

equation (7): The cut out strip of unit length, receiving the forces qD and qZ at its 

top and bottom side respectively, is in equilibrium with the developed Bredt 

shear flow at both its faces (Fig. 5). The resultant of these two flows is the so-

called differential shear. According to Bredt’s formula it is:   

                                T BdM Mdv 1

ds ds 2bh 2bhR
= = -        (8) 

Thus the strip being in equilibrium as a plane structure, under the loads qD, qZ 

and dv, gives rise to the self-equilibrated diagonal loading of the profile  

                                          B

2 2

M 1 1
S

2R b h
= +  (9) 

as shown in the figure, which causes longitudinal bending of the walls as well 

as transverse bending of the section profile, as it has been examined in detail for 

the rectilinear girder.   

Although the analogy is not quite accurate, for the preliminary design needs 

and for ratios L/R<0.3, it may be considered that the left web wall takes the 

downward parabolically distributed along the length of the girder according to 

the Fig. 5 load Sw = MB /(2·R·b), acting, as in the case of rectilinear beam, like a 

beam resting on an elastic foundation with a ‘subgrade modulus’ Κ, as 

examined previously. 

 

3  NUMERICAL EXAMPLES 
The above theory was tested on two simply supported box girder bridges, a 

straight one and a curved one. Both the bridges of a 40m span were designed to 

have a cross section with b=6.2m and h=2.5m, top and bottom slab of thickness 

of 0.25m and a web thickness of 0.5m.  

 

3.1 Straight bridge 
The straight box-girder bridge was subjected to a couple of anti-symmetric line 

loads only extending over 8m symmetrically about the mid-point of the bridge. 
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4466 shell elements were used to discretise the girder. The results of the FE 

program [4] (Fig.7) showed a value of approximately 343 KN/m
2
 at the top and 

bottom of the element located at the middle of the bridge. The beam on elastic 

foundation having inertia and spring data according to section 1.2, was loaded 

by a uniform load spanning 8 m, over the centre, and provided a respective 

value of 436 KN/m
2
, meaning a difference of roughly 21,3 %, showing that the 

theory is quite conservative and on the safe side. 

 

 
Figure 7. 3D FE results and distribution of stresses along the middle section 

 

3.2 Curved Bridge 
The discretization of the bridge with 4466 shell elements may be seen in Fig. 8.  

 

 
Figure 8. 3D FE results and distribution of stresses along the middle section 
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Figure 9. Comparison of analytical and numerical results 
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The bridge is subjected to its own weight. According to the analysis exposed in 

section 2.2 a curved beam on elastic foundation having inertia and spring data 

the same as for the straight bridge was considered, which was loaded by a 

parabolic continuous loading over the whole length of the beam.  This beam 

provided results which were superposed with those due to pure bending. The 

comparison with the results of the FE program [4] may be followed in Fig. 9. 

One may see that the theory results are on the safe side with a maximum 

discrepancy of approximately 15%.  

 

4 CONCLUSIONS 
The deformability of the box section of a bridge girder under a torsional 

response leads to non-negligible longitudinal stresses which can’t be predicted 

according to the classical theory of torsion (Bredt). However, following the 

deformability of the folded plate system it is possible to derive the above 

stresses using a methodology reducing the whole problem to the response of a 

beam on elastic foundation both for the rectangular and the curved girder. 

Comparison with FE results shows that this methodology leads to results lying 

on the safe side making it suitable for preliminary design purposes.  
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