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ABSTRACT: A parametric analysis of the nonlinear static behaviour of self-

anchored long-span bridges is here carried out by using a 3D nonlinear finite 

element model of the bridge. Both cable-stayed bridges with a fan-shaped 

arrangement of stays and combined cable-stayed-suspension bridges are 

considered in the numerical investigations. The importance of an accurate 

description of geometrically nonlinear effects, arising from the cables nonlinear 

behavior in coupling with the instability effect of axial compression in girder 

and pylons, is pointed out by means of comparisons with results obtained by 

using different cable models. Numerical simulations are devoted to analyze the 

influence of the main physical characteristics of the bridge, on the maximum 

load-carrying capacity and related collapse mechanisms. A nonlinear procedure 

for finding the initial geometry of the bridge and prestress distribution under 

dead load is incorporated in the model. The strong role of nonlinear cables 

response, in coupling with the notable influence of the relative girder stiffness 

on the stability bridge behavior is analyzed. For the self-anchored combined 

cable-stayed-suspension bridges the influence of the dead load distribution 

factor on the limit load evaluation is also accounted. 
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1   INTRODUCTION  
Due to their ability to overcome long spans, during last decades cable supported 

bridges received notable attention. Several applications are proposed in the 

framework of both suspension and cable stayed bridge typologies. The erection 

procedures for a typical cable stayed bridge, due to the free cantilever arms 

growing to the half length of the main span, produce dangerous conditions 

because large displacements and rotations are observed [1]. Contrarily, the 

construction processes in the suspension bridges, are very safe, because the 

main cable guarantees stability during girder erection procedure also for long 

spans [1]. Moreover, the cable-stayed bridges with respect to the suspension 

systems denote, under live loads, enhanced stiffness properties. Consequently, 
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the combination of the two systems seems able to provide notable advantages 

especially in the context of long span bridges, providing stable and safe erection 

processes due to the suspension cable system and reduced deformability of the 

girder due to the stiffening effect of additional stay elements. 

In general, self-anchored long-span bridges exhibit a remarkable nonlinear 

behavior. Nonlinear effects in cable supported bridges may arise from different 

sources, including the nonlinear behavior of a single cable due to the sag effect 

induced by self-weight, changes in geometrical configurations due to large 

deflections effects (usually large rotations but small strains) in both towers and 

girder due to their slenderness, the geometrical instability effect of the axial 

compression induced in the towers and girder, as well as the interactions 

between cables, deck and pylons nonlinearities [2, 3].  

Other nonlinear effects may be related to the constitutive behavior of 

materials [4-5] or to the coupling between torsion and bending of the girder. 

Considerable attention has been devoted in the literature to the nonlinear 

structural behavior problem of cable supported bridges [2-5, 6,7]. In order to 

reduce the complexity of the highly non-linear problem, most studies available 

in the literature have introduced some reasonable assumptions in their 

formulations including one or more of sources of nonlinearities. For instance, 

pylons nonlinearities arising from beam-column effect are often neglected 

assuming a high flexural stiffness in pylons. An in-plane analysis is typically 

carried out excluding out-of-plane and torsional deformation modes and their 

interaction [2, 5], which can be usually not important in absence of eccentric 

load also when a three-dimensional bridge model is developed [3]. Moreover, in 

the framework of the stability analysis of the long span cable supported bridges, 

the prebuckling behavior is often assumed to evolve linearly with the load 

parameter, thus leading to a linear eigenvalue problem for the critical load [3, 

6]. Although most nonlinear analyses have focused on geometrical nonlinear 

effects some analyses have involved both geometric and material nonlinearities 

and analyzed the ultimate behavior and load capacity of a cable-stayed bridge 

[4, 5, 7]. 

Due to its inherently nonlinear behavior a conventional analysis of the cable 

supported bridge, based on linear assumptions is often not applicable especially 

for long span bridge for which the main girder has the tendency to become more 

slender and lighter. Existing models which do not take into account 

appropriately for the softening stay behavior, such as those based on the 

equivalent tangent modulus of elasticity or those assuming that the cable resists 

only tensile axial force increment with no stiffness against axial compression 

increment may lead to a notable underestimation of the maximum load carrying 

capacity of the bridge for specific loading conditions. Moreover, the actual 

prebuckling behavior of the bridge may notably deviate from the linear 

assumptions and a nonlinear limit point analysis should be carried out in place 

of a linear stability analysis [5]. As a consequence, a more realistic nonlinear 
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structural analysis accounting for the most important geometrically nonlinear 

effects should be adopted in conjunction with a nonlinear stability one. To this 

aim this contribution proposes a numerical investigation on the nonlinear static 

behavior of long span cable supported bridges (both fan-shaped cable-stayed 

bridges and combined cable-stayed-suspension bridges are analyzed), by 

considering the nonlinear behavior of cables in coupling with the instability 

effect of the axial compression in both girder and pylons. The study is carried 

out by introducing a general nonlinear model for both the analyzed cable-stayed 

and combined bridges, after an introductory analysis illustrating the general 

features of the buckling and post-buckling behavior of the cable supported 

bridges. Therefore a nonlinear three-dimensional finite element model of the 

bridge is formulated to accurately determine the influence of nonlinear effects 

on the structural bridge behavior and on its maximum load carrying capacity. 

The cable system is modeled according to the multi element cable system 

approach, where each cable is discretized using multiple truss element and large 

deformations are accounted by using Green-Lagrange strains. The bridge is 

modeled by means of a 3D assembly of beam elements and the connections 

between cables and girder have been obtained by using constraint equations. A 

nonlinear procedure for finding the bridge initial shape is incorporated in the 

analysis in order to determine properly the initial geometry and pre-stress 

distribution under dead load.  

 

2    OVERVIEW OF NONLINEAR BRIDGE BEHAVIOR 
Cable behavior is one of the most relevant sources of nonlinear elastic behavior 

of cable supported bridges. In particular, for cable-stayed systems the axial 

stiffness of stays must be accurately evaluated in order to avoid inappropriate 

predictions of the actual load carrying capacity. To this end, it must be observed 

that for large stress increments the secant modulus of the stress-strain 

relationship should be adopted instead of the tangent one. 

The stress increment in the stay may be written in the form: 

                                     *
0 ,sE       ,                                         (1) 

where 
*
sE  is the secant modulus of the stay which is a nonlinear function of the 

axial strain increment , measured along the stay chord, and of the initial 

tension 0. 

If a parabolic shape of the stay deformed configuration is assumed, the well-

known Dischinger theory can be employed to model the secant and the tangent 

elastic moduli 
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where E is the Young modulus of the material cable,   the cable weight per unit 

volume, lo the horizontal projection of the stay length, and 0. the initial stress 

in the stay. It must be observed that the tangent modulus is related to small 

stress increments from the initial configuration (i.e. →1). In this case, the 

cable equivalent modulus can be considered constant during load increment and 

the nonlinear cable response can be approximated by the tangent linearized one. 

Assuming that when shortening occurs the cable stiffness vanishes leads to the 

tension only approximation of stay behavior (see for instance [2,6]): 

            */      0;          / 0      0tE if if               .             (3) 

The effects of the above assumptions on the nonlinear cable behavior, can be 

analyzed qualitatively by considering a complete fan shaped and self-anchored 

cable-stayed bridge scheme with the girder not horizontally constrained and the 

load uniformly applied on the central span. Generally speaking, assuming a 

linear prebuckling behavior, the girder compression produces an equilibrium 

bifurcation when the load reaches the critical value.  
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The postbuckling behavior strictly 

depends on the shape of the 

buckling mode and may show a 

decreasing behavior due to the 

softening cable response in 

compression (see the dashed line 

curve in Fig. 1). The actual bridge 

behavior taking into account the 

nonlinear prebuckling effects, 

doesn’t exhibit an equilibrium 

bifurcation and is qualitatively 

shown by means of a continuous 

line in Fig. 1. In particular, when 

the secant modulus is adopted for 

the cable response a strong snap 

buckling behavior is expected with 

the maximum load parameter max 

significantly below the critical 

load c and post-buckling behavior 

of asymmetric unstable type. 

Figure 1.  Nonlinear bridge behavior: load parameter 

versus lateral midspan deflection.  

This behavior is mainly attributed to the softening behavior of stays under 

shortening. On the other hand, when the stay behavior is modeled by means of 

the tangent modulus a non conservative prediction can be obtained since the 

limit load is larger than that based on the secant modulus formulation and a 

mild snap buckling occurs as in a symmetric unstable bifurcation. The 
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magnitude of the critical load, depending exclusively on the tangent modulus 

distribution along the stays, changes slightly with respect to the secant modulus 

formulation. For instance, the critical load should remain unchanged provided 

that for each stay the stress at bifurcation is adopted as initial stress in the 

tangent modulus formula. Note that when buckling occurs at high load level, as 

in the case of uniform loading on the entire bridge, a value near to E can be 

assumed for the tangent modulus. A similar behavior occurs when the tension 

only truss model is adopted but the maximum load may be notably lower than 

the more accurate prediction obtained using the secant modulus model, thus 

leading to a conservative prediction of the maximum load-carrying capacity.  

It results that bridge stability is mainly a consequence of two competing 

nonlinear effects in the tangent stiffness expression: the instability of axial 

compression in both girder and pylons and the stabilizing one due to the tangent 

stiffness of stays attached to the left and right pylons. The former generally 

increases with the load parameter , the latter may increase or decrease 

depending on the actual deformed configuration of the bridge due to the 

softening cable behavior under shortening. 

 

3     BASIC ASPECTS OF BRIDGE MODELS 

3.1  Cable-stayed bridge 
Here a cable stayed bridge scheme with a fan-shaped arrangement of stays is 

analyzed, based on a diffused stays arrangement (L<<1). The bridge model is 

able to predict the static behavior of cable stayed bridges taking into account the 

nonlinear behavior of stays, adopting the Dischinger’s fictitious modulus and 

taking into account the instability effect due to the axial compression in the 

girder [8].  

The analyzed bridge scheme is illustrated in the Fig. 2. The girder is 

supported by stays joining at the tower tops. The two lateral couple of stays, 

called anchor stays, assure the bridge equilibrium and are anchored by means of 

two vertical supports; the girder is not constrained in the longitudinal direction. 

It is assumed that the erection method is such that the deck final 

configuration is practically straight and free from bending moments. The bridge 

static response when the live load p increasing with the parameter  is applied, 

is now considered starting from the straight equilibrium configuration of the 

bridge deck corresponding to the application of the dead load g and cables pre-

stress. As a matter of fact, the horizontal equilibrium of the bridge requires 

shear forces to be the same at the pylon top sections and this ensures that 

displacements of the pylon tops will always be equal and opposite. Similarly 

due to rotational equilibrium considerations about the y-axis, the pylon tops 

torsional rotations will always be equal and opposite. 

The vertical, horizontal and torsional equilibrium equations for the girder 

respectively are: 
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where EI is the girder flexural stiffness, N
g
 is the axial force in the girder due to 

the dead load g.N(w)=EAw’ indicates the axial force increment in the girder 

due to live loads p; E, A and Ct are respectively the Young modulus, the cross 

section area and the torsional stiffness of the girder. Moreover vq  and hq  are 

the vertical and the horizontal components of the stays-girder interaction, 

respectively, whereas mt denotes the stays-girder torsional couple interaction. 

The two components of the stays-girder interaction depend on E
*

SL and E
*

SR, 

representing the Dischinger’s secant modulus for the cables, respectively 

applied on the left (L) and on the right (R) stays with respect to the y-z plane 

(see the right of Fig.2). Note that E
*

SL  and E
*

SR depend on the additional axial 

strain  in the cables produced by the additional displacements v, w, u  and 

 and that the initial stress of eqn (2) here represents the stress in the cables 

under the dead loads g.  
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Figure 2.  The long-span cable stayed bridge structural scheme. 

 

Usually the stays cross section area As of the left or right curtains of stays is 

designed so as dead loads produce constant tension in all stays and this leads to 

AS = ggsin in which g  is defined as a function of the allowable stress 

a as g=ga /(p+g) assuming that the stress increment in the stays are 

proportional to the design live load p. For the anchor stays the cross sectional 

area A0 is designed in such a way that the allowable stress a is obtained for live 

loads p applied to the central span only, leading to: 
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where g0 is the initial tension in the anchor stays under dead load g. 
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The horizontal and torsional equilibrium equations of the pylons, involving the 

effects of the stays-girder interaction, lead to integral equations [9]. If the left 

pylon equilibrium is considered, the following equation is obtained:  

 
0 0

0 0 2 0 0

( /2) ( /2)

0,   0h L R f L R

l L l L

q dz Ku S S m dz Kb S S b
   

         ,        (6) 

where K and mf are the pylon tops flexural stiffness and the horizontal flexural 

couple per unit length acting on the left side of the bridge (z<0), respectively. 

Moreover, in equations (6) S
0
L and S

0
R are the horizontal components of the 

anchor stays axial forces, for the left and right curtains of stays with respect to 

the vertical yz plane, respectively, and  is the torsional rotation of the tower 

top. A similar equation is obtained for the right pylon. 

In order to analyze the main parameters governing the bridge behavior, the 

following dimensionless quantities are introduced: 
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The parameters , A and , respectively represent a measure of the relative 

bending, axial and torsional stiffness between the girder and stays, whereas a is 

related to the stay deformability accounting for the cable sag effect. Additional 

details on the continuum bridge formulation can be found in [8]. It is worth 

noting that the above formulation does not take into account for buckling in the 

horizontal plane (out-of-plane buckling) and is strictly valid for the H- shape 

pylons. These restrictions will be removed in the discrete bridge model. 

 

3.2  Combined cable-stayed suspension bridge 
The structural model of the combined bridge, as shown in Fig.3, is based both 

on stayed and suspension cable systems, arranged in a self-anchored scheme, 

where the connection between suspension main cable and pylon is assumed to 

be a frictionless saddle system. Moreover, the bridge scheme is consistent with 

a fan-shaped system, in which the stays are perfectly constrained to the pylons 

and simply supported constraints are considered at girder pylon connections and 

at the left and right girder cross section ends. The bridge model is founded on 

the assumption of a uniform distribution of stays along the deck. In particular, 

the stay spacing  is small in comparison to the bridge central span L. As a 

result, the self-weigh loads produce negligible bending moments on the girder 

with respect to that raised by the live loads. 

A proper erection procedure is supposed to guarantee that the girder position 

under self-weight is practically coincident with the undeformed configuration 

and, consequently, free from bending moments. In particular, the initial stress 

distribution produces tension in the cable systems and compression in both 



40                         Nonlinear Static Response of Self-anchored Cable Supported Bridges 

girder and pylons. The overall geometrical parameters of the combined cable 

system are governed by the self-weight loading condition (Fig.3). In particular, 

the stay and hanger cross sections are designed in such a way that the self-

weight loads produce constant tension over all distributed elements and equal to 

a fixed value, namely g. 

The hanger elements follow a linear elastic behavior and are characterized 

by negligible weight in comparison to that involved by the main cable or the 

girder. These assumptions are defined consistently with some formulations 

recoverable from the literature [1]. In particular, it is supposed that the hanger 

elements remain always in tension, due to fact that a proper pre-stress system 

applied during the erection procedure is able to prevent compression state. 

Moreover, a proper erection procedure is assumed to distribute the girder self-

weight load with a rate r (0<r<1), namely dead load distribution factor. This 

hypothesis is in agreement with the main theory on combined supported 

bridges, which considers the dead load distribution subdivided into equivalent 

loads depending on the amount required of the cable steel quantity involved in 

the cable system [1].  
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Figure 3.  The long-span combined cable-stayed-suspension bridge structural scheme. 

 

From an analytical point of view r corresponds to a dead loads distribution 

factor, equal to the fraction of the total girder dead load taken by the suspension 
system in the regions where both suspension and cable stayed systems are 

present. Therefore, the girder self-weight amounts applied to the cable stayed 

(st) and the suspension (sp) systems, gst and gsp respectively, are defined by the 

following expressions: 

                                          1 ,       st spg r g g rg   ,                                     (8) 

where g represents the girder self-weight loads per unit length. The cross 

section area of a generic stay or hanger, and of the the anchor stays are 

dimensioned by means of the following equations: 
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where g  and go  are the self-weight design tension before defined for the 

cable-stayed bridge scheme,  is the stay and hangers spacing step,  is the 

stay orientation angle with respect to the horizontal direction. Similarly for the 

anchor stays, the geometric area is determined in such a way that the 

corresponding allowable stress, i.e. a, is reached in the static case, for live 

loads applied on the central span only. 

From a practical point of view, the design parameter r is an indicator of the 

ratio between the suspension system steel quantity and that involved in the 

combined bridges. As an example, assuming that r is equal to 0 or 1, the 

combined bridge tends to a perfect cable stayed or suspension bridge scheme, 

respectively. The cable stayed system, especially for long spans, is affected by 

high stiffness reduction due to Dischinger effects. As a consequence, the stays 

are supposed to be distributed on a reduced portion of the main span, namely 

2l+L-lm (Fig.3), which can be estimated, approximately, by the following 

relationship [1]: 
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where gc is the self-weight main cable suspension distributed loads. In the 

framework of long span bridges, the ratio between sag and horizontal main 

cable projection length is usually small. Therefore, the initial main cable 

configuration y and the corresponding horizontal axial force Hg can be 

determined, utilizing a parabolic approximation of the cable profile, as: 

    2( ) ( ) / ,      / 8 - / 2 / 4 /g g c st m my z M z H H g rg L g l L l f             (11) 

where M(z) is a fictitious bending moment due to distributed self-weight loads 

taken by the suspension system calculated as for a simply supported beam and f 

is the main cable sag. The cross sectional area of the main cable is given by [1]: 

                                          / cosc g p aA H   ,                                     (12) 

where  is the orientation angle formed by the main cable tangent at pylon 

intersection and the vertical direction and Hg+p  is the horizontal main cable 

force related to live loads applied to the whole central span. The main cable 

position as well as the corresponding axial force horizontal projection, i.e. 

 , tCy H , are supposed to be expressed as the sum of contributions related to 

self-weight loading (y, Hg) defined by eqn (11), and corresponding ones 

produced by the live loads application, i.e. (vc, h): 
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According to a continuum approach, the interaction forces sq between main 

cable and girder, are expressed, analytically, for small hanger spacing, by means 

of a continuous function depending on the bridge kinematic, the main cable 

configuration and the hanger stiffness properties, as: 

                                       /s h cq EA v v H y                                      (14) 

in which v and vc are the vertical displacements for the girder and the main 

cable, respectively. Consistently with a flat-sag based cable formulation, which 

admits a parabolic approximation of the main cable profile, the equilibrium 

equation along vertical direction is a function of the hangers interaction forces 

and can be expressed in terms of incremental quantities measured starting from 

the undeformed configuration:  

'
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The vertical equilibrium equation for the girder is in this case: 
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where qv is the vertical component of the stays-girder interaction. Horizontal 

and torsional equilibrium equations for both girder and pylons can be expressed 

like in the case of cable-stayed bridges keeping in mind that here the torsional 

couple mt includes both the stay-girder torsional interaction and the hanger-

girder torsional interaction. 

 

4    3D-DISCRETE MODEL 
In this section a 3D discrete FE bridge model is examined for both the case of 

cable-stayed and combined cable-stayed suspension bridges, taking into account 

the geometric nonlinear effects for the cable system under general loading 

conditions, in order to obtain accurate results. In particular, the actual stays (and 

hangers for combined bridges) spacing is considered in the model. This discrete 

model has been analyzed by means of a displacement-type finite element (FE) 

approximation, implemented in the commercial software COMSOL 

MULTIPHYSICS™ [10]. A three dimensional finite element model has been 

developed by using beam elements for the girder and the pylons and nonlinear 

truss elements for the cable system. Specifically, the bridge deck is replaced by 

a longitudinal spline with equivalent sectional and material properties and the 

pylons are composed by two columns connected at their top and at the level of 

the bridge deck by two horizontal beam elements. Moreover, the instabilizing 

effects produced in both girder and pylons by the axial compression force N has 

been accounted by adding the following weak contributions for pylons and 

girder, respectively, to the virtual work principle formulation: 
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where N is the axial force, x, y and z the denote rotations about the x, y, and z 

axes, and Le is the element length. 

The cable system is modeled according to the Multi Element Cable System 

(MECS) approach, where each cable is discretized using multiple truss element. 

The stiffness reduction caused by sagging is accounted for by allowing the 

cable to deform under applied loads. Large deformations are accounted by using 

Green Lagrange strains and the axial strain is calculated by expressing the 

global strains in tangential derivatives and projecting the global strains on the 

cable edge. Additional details about the approach here adopted to model 

nonlinear cable behavior can be found in [10]. It is worth noting that different 

approaches have been proposed in the literature to model the nonlinear cable 

behavior ranging from the simple equivalent modulus approach, according to 

which each cable is replaced by one bar element characterized by an equivalent 

tangent modulus [4,7] often with a tension only behavior [2, 5, 6], to more 

accurate techniques based on the elastic catenary results.  

In the case of the simplified cable behavior simulated by using the tangent 

modulus for the cable-stayed bridges, a single truss element is adopted for each 

stay and the geometrical nonlinearities are deactivated. The constitutive 

behavior is simulated by introducing the expression shown in eqn (2) for the 

truss element constitutive modulus, with the initial stress derived from results 

obtained through the initial shape analysis formulated in the sequel. 

The tension only behavior (always for the cable-stayed bridges) is modeled 

similarly except that a nonlinear constitutive behavior according to eqn (3) is 

incorporated in the constitutive relationship of the truss element representing 

the single stay. To this end the longitudinal modulus of the truss element is 

multiplied by a step function depending on the axial strain increment with 

respect to the initial configuration of the bridge under dead loading, in order to 

exclude any stiffness contribution of the cable under shortening. Therefore, the 

constitutive behavior of the truss element is (see [8] for additional details): 

     
* ( ) ,  ( ) 1  0;  ( ) 0  0tE step step if step if                        (18) 

The constraint condition between the girder and the stays (and the hangers for 

combined bridges) is modeled with offset rigid links to accommodate cable 

anchor points, by means of the extrusion coupling variable methodology (see 

[10] for additional details). The buckling and post-buckling behaviors have been 

investigated by using nonlinear analyses taking into account large deformation 

but small strains with linear stress-strain relationship and a solution strategy 



44                         Nonlinear Static Response of Self-anchored Cable Supported Bridges 

based on the damped Newton method has been adopted. A suitable modeling 

technique in this case, where the relationship between applied loads and 

displacements is highly nonlinear, is to use an algebraic equation that controls 

the applied live loads p so that the generalized deflection of a control point 

reaches the prescribed values. In order to capture the typical snapping behavior 

of the load-displacement curve, a generalized deflection increasing 

monotonically with the evolution of the loading process is adopted, so that no 

snap-back are detected when the load-displacement curve is plotted in terms of 

the assumed control parameter. In the case of loading on the central span of the 

bridge, an appropriate choose to capture the snapping behavior is the lateral 

midspan deflection l or the girder end in-plane rotation l, although in some 

cases relevant to the TO model the central midspan deflection δc has been 

adopted. An initial shape analysis must be carried out to find the geometric 

configuration together with the associated pre-stress force distribution in cables 

satisfying both equilibrium and the design requirements of a straight initial 

bridge configuration. All geometric nonlinearities are taken into consideration 

in the initial shape analysis, namely geometric effects of axial compression in 

both girder and towers and cable sag nonlinearties induced by cable dead load.  

 

5     NUMERICAL RESULTS 

5.1  Cable-stayed bridge 
Here numerical results for the cable-stayed bridge model are presented to 

examine the instabilizing effect produced by the axial force in the girder for 

increasing live loads λp. In particular two types of loadings are considered: a 

uniform load distributed on the whole bridge length and a uniform load applied 

on the central span only. The following dimensionless parameters are used in 

the numerical analyses:  

6/2 2.5,   / 5 3,   / 0.1,   / =1 105,  / 7200 2.1 10 ,   / 50aL H l H b H L E K g        

whereas the material properties assume the values that concern the usual case of 

steel girders and towers. The value of the dead load g is equal to 300,000 N/m, 

typical of a steel deck, whereas the cable unit volume weight has been assumed 

equal to  =77.01 kN/m
3
. The other parameters , , A and a are used to define 

the bridge geometrical parameters according to eqn (7).  

A parametric analysis is carried out by adopting the following values:  = 0.2 

or 0.3, a = 0.10 or 0.20 and p/g = 0.5 or 1, whereas A has been assumed equal 

to 54.5. As far as the analysis carried out with the discrete model is concerned, 

the following additional parameters are needed: 

34 4 / ,           /h yy g r pxxI b g I I I    

defining respectively the relative girder to stay stiffness for bending in the 

horizontal plane and the tower to girder bending stiffness ratio for bending in 
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the vertical plane. The former parameter gives the bending stiffness EIyy, 

whereas the latter the pylon bending stiffness EIpxx. The towers stiffness Ipzz for 

out-of-plane bending has been assumed equal to EIpxx and the ratio between the 

height of the pylon from pier bottom to bridge deck H1 and H has been assumed 

equal to 0.25. The axial, bending and torsional stiffnesses of the beams 

connecting the two towers of the pylons have been assumed equal to the 

corresponding ones adopted for the towers. Moreover, the cross section area and 

the torsional stiffness of the towers have been assumed equal to those of the 

girder. These parameters allow to define the bridge characteristics for the 3D 

discrete model. On the other hand the following parameters have been assumed 

for the remaining parameters: =0.1, h=5, t=0.1. The influence of the different 

stays response approaches introduced in section 2, on the bridge nonlinear 

behavior by using the more general 3D discrete model is here investigated. To 

this end the response of a single stay has been modeled by using the multiple 

truss element nonlinear formulation, which will be denoted as NLM, the tangent 

modulus linear model (denoted as LM in the sequel) and the tension only 

approximation (denoted as TO in the sequel).  
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Figure 4.  Cable stayed bridge: load parameter λ versus central midspan deflection δc. 

 

Figure 4 shows for =0.2 , a=0.2 and p/g=0.5 the typical snapping for low 

values of  due to the coupling between the instability effect of the axial 

compression in the girder and the softening behavior of stays response in the 

lateral span, occurring in the case of the central loading condition and the H 

pylon shape. As the load parameter increases while in the central span the 

instability effect of the axial compression is balanced by the stiffening stays in 

the lateral spans stays show a large stress reduction produced by the lateral 
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spans deflection and an instability condition is rapidly reached producing a 

bound in the applied load. The load-displacement curves are represented in term 

of the central midspan deflection c in order to better appreciate the differences 

between the three considered models, although the nonlinear analyses have been 

driven always by the lateral midspan deflection. In figure 4 the results obtained 

by using the linear tangent model (LM) and the tension only model (TO), are 

also shown in order to appreciate the influence of the nonlinear cable response 

modeling on the global bridge behavior. 

 

5.2  Combined cable-stayed-suspension bridge 
Here numerical results for the self-anchored combined cable-stayed suspension 

bridge model are presented. It’s well known that for the combined bridges a 

distribution of the girder self-weight load with a rate r (0<r<1), namely dead 

load distribution factor, is assumed. This hypothesis is in agreement with the 

main theory on combined bridges, which considers the dead load distribution 

subdivided into equivalent loads depending on the amount required of the cable 

steel quantity involved in the cable system. In particular, r corresponds to a 

dead load distribution factor, equal to the fraction of the total girder dead load 

taken by the suspension system in the regions where both suspension and cable 

stayed systems are present. From a practical point of view, assuming that r is 

equal to 0 or 1, the combined bridge tends to a perfect cable stayed or 

suspension bridge scheme, respectively. In the numerical simulations three 

different values for r are considered, namely r=0 (cable stayed bridge), r=1 

(suspended bridge) and r=0.5 (combined bridge). 

In this section the influence of the coupling stayed-suspension parameter r 

on the maximum load parameter for the self-anchored combined cable-stayed 

suspension bridge is analyzed. The load condition corresponding to a uniform 

load applied on the central span only is considered in the analysis.  

The geometrical configuration is characterized by L=1500 m, l=500 m and 

f=214 m. The value of the dead load g is equal to 300,000 N/m, typical of a 

steel deck. The stays and hangers spacing  is assumed equal to L/30, whereas 

two different value for p/g are considered (p/g=0.25 and 0.50). For the 

combined bridges the multiple truss element nonlinear formulation is used to 

model the single cable response (main cable and stays). For the hangers a single 

linear truss element is employed. Figure 5 shows for the analyzed geometrical 

configuration (L=1500 m, l=500 m, f=214 m) and p/g=0,25; 0.50 the load-

displacement curves for the three bridge schemes corresponding to the 

distribution dead load factor r (r=0, 0.5, 1). In particular, the typical snapping 

behavior for relatively low values of  occurring in the case of the central 

loading condition can be observed. The load-displacement curves are 

represented in term of the lateral midspan deflection l (used like control 

parameter to drive the nonlinear analyses) and show the differences between the 
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three considered bridge schemes. The diagrams evidence the conservative 

prediction of the limit load in the case of suspension bridge (r=1) with respect 

to the cable-stayed system (r=0). Moreover, it’s possible to observe how 

combination of the two systems provides stabilizing effect in terms of 

maximum load parameter (0 < r < 1). 
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Figure 5.  Combined bridge: load parameter λ versus lateral midspan deflection δl. 

 

6   CONCLUDING REMARKS 
A numerical investigation on the geometrically nonlinear static behavior of self-

anchored long span cable supported bridges is carried out by adopting a 

tridimensional finite element model for the bridge. Both long span cable-stayed 

bridges, with a fan-shaped arrangement of stays and self-anchored combined 

cable-stayed-suspension bridges are considered in the numerical computations. 

For the first bridge model analyzed numerical investigations are devoted to 

study the influence of three different stays response approaches on the bridge 

nonlinear behavior by using a more general discrete approach. In particular, the 

mechanical response of a single stay has been modeled by using the multiple 

truss element nonlinear formulation (denoted as NLM), the tangent modulus 

linear model (denoted as LM) with the initial stress derived from the initial 

shape analysis and the tension only approximation (denoted as TO) according to 

which cable assumes a vanishing stiffness under shortening.  

Numerical results show the typical snapping behavior for high values of the 

load parameter λ due to the coupling between the instability effect of the axial 
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compression in the girder and the softening behavior of stays response in the 

lateral span, occurring in the case of the central loading condition. Moreover, 

from numerical investigations it was found that in the case of uniform loading 

on the whole bridge length, contrarily to that found for central loading 

condition, as the load parameter increases the effect of softening in stays 

tangent stiffness is negligible occurring for a very small group of cables and for 

larger load level. For this loading condition it is possible to appreciate the 

conservative behavior of the LM and TO models with respect to the NLM, in 

terms of the maximum load parameter max. In the case of the self-anchored 

combined cable-stayed-suspension bridges the influence of the coupling stayed-

suspension parameter r on the maximum load for the bridge is analyzed. Results 

evidence the conservative prediction of the limit load in the case of suspension 

bridge (r=1) with respect to the cable-stayed system (r=0). Moreover, numerical 

investigations show that combination of the two cable systems provides 

stabilizing effect in terms of maximum load parameter.  
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