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ABSTRACT: In this work, the stability of curved-in-plane cable-stayed bridges 

is thoroughly studied. Expressing the tensile forces of the cables with respect to 

the deck and pylon deformations, the cable-stayed bridge problem is reduced to 

the solution of a curved-in-plane beam representing the deck. A three-

dimensional formulation is considered for the analysis of the c-s bridge model. 

The theoretical formulation is based on a continuum approach, which has been 

widely employed in the literature to analyze long span bridges. Two case 

studies are carried out in the present work. The first is concerned with the 

determination of the critical sectorial angle of an unloaded bridge and the 

second one with the determination of the critical horizontal load related to the 

sectorial angle of the bridge.  
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1 INTRODUCTION 

Cable-stayed bridges are a particular case of bridge structures that have been of 

great interest in recent years (though they have been known since the beginning 

of the 18
th
 century), particularly because of their special shape, aesthetic and 

also, because they are an alternative solution to suspension bridges for long 

spans (Troitsky [1]). 

The study of the behavior of cable-stayed bridges and their substructures reveals 

several nonlinear behavior patterns, concurrently under normal design loads, 

due to the individual nonlinearity of the above substructures such as pylons, 

stay-cables and bridge-deck and their interactions. 

There are the geometric nonlinearities that arise, mainly, from the large 

displacements of cables and the structural nonlinearities that are caused by the 

strong axial and lateral forces acting on the bridge-deck and the pylons.    

There are numerous publications dealing with the static and mainly the dynamic 

behavior of cable-stayed bridges that have presented significant results (see the 

main bibliography in Ref[2]).   

A special form of cable-stayed bridges is the curved-in-plane ones. In this 

particular field, the bibliography is rather poor. 

The most interesting publications are those of J. Brownjohn et al [3] who study 
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the dynamic behavior of a 100m span curved cable stayed bridge constructed in 

Singapore based on full-scale testing and analytical models, and of Sirigorino & 

Fujino [4] who try to access the dynamic characteristics of the 455m Katsushika 

harp-type curved cable-stayed bridge by employing a time-domain multi-input 

multi-output (MIMO) system identification (SI) technique.  

The study of the stability of C-S-Bridges curved-in-plane is terra incognita. 

In this paper, using a previous publication of authors, we try to study the 

stability of such a bridge. 

Expressing the tensile forces of the cables in relation to the deck and pylon 

deformations, the problem is reduced to the solution of a beam curved-in-plane. 

A three-dimensional analysis is considered for the solution of the bridge model. 

The theoretical formulation is based on a continuum approach, which has been 

used in the literature to analyze long span bridges. Two cases are carried out. 

The first is the determination of the critical central angle of an unloaded bridge 

and the second is the determination of the critical horizontal load in relation to 

the central angle of the bridge.  

 

2 BASIC RELATIONS 

Let us consider the cable-stayed bridge shown in Fig. 1, (a) in a perspective 

sketch, (b) in plan view, and (c) in front view. The bridge, the deck of which is 

curved-in-plane with radius of curvature R, is suspended and supported by μ-

cables starting from point 1 with an angle ρ1, and ending at point 2 with an 

angle ρ2, and anchored at the top of the pylon PG. 

There is also a back-stay cable (single cable or system of cables), as it is shown 

in Figs 1(a) and 1(c). The deck is made from homogeneous and isotropic 

material with modulus of elasticity E, and it is a part of a circle with center K, 

radius R, and sectorial angle ρ. 

Thus, its length L is determined by the above angle ρ through the relation: 

RL                                                                                               (1a) 

The pylon is made from homogeneous and isotropic material with modulus of 

elasticity Ep, while it is inclined as to the vertical (PP') at angle γ1 and has a 

length (PG) given by the relation: 

1cos

h
PG                                                                                           (1b) 

where h is the distance of the top of the pylon P from the foundation level. 

We consider in addition that the cross-section of the pylon is referred to the 

main-axes 1-1 and 2-2, and that the pylon and the back-stay cable are located on 

the vertical plane that contains the main-axis 2-2. The cables are made from 

material with modulus of elasticity Ec. 

The back-stay cable is inclined with respect to the vertical direction by an angle 

γ2 and its length is given by the relation: 
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2cos

h
PC                                                                                           (1c) 

 

where it is assumed that both the pylon and the back-stay cable are founded on 

the same level without loss of generality. 

The plane of the deck is at a distance ho above the foundation level. 

The projection P' of the top of the pylon on the level of the deck is determined 

by the lengths 
1  and 

2  (Fig. 1) which are known. Easily, one can determine 

the angles 
1
 and 

2
 through the relations: 
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The deck-beam is referred to the three-orthogonal, clockwise, curvilinear 

coordinates system A,x,y,z shown in Fig. 1(a). 

With the assumptions and the analysis presented by Raftoyiannis & Michaltsos 

[2], the equations governing the behavior of the bridge under static loads are the 

following: 
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Fig. 1  Perspective sketch, plan, and front view of a curved-in-plane c-s bridge  

 

 

In addition we have [2]: 
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In Fig. 2, one can see the deformed state of the bridge as well as the 

deformations of the deck.  
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Fig. 2  The deformed state of the bridge 

 

 

3 THE UNLOADED BRIDGE  

For the unloaded bridge we have: 

0mppp xzyx        (3.a) 

In order to solve the system of equations (2.a), we are searching for a solution 

of the form:  
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Introducing the expressions of eqs (3.b) into eqs (2.a), we get: 
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where: 
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Multiplying successively each of eqs(4.a) by 
L

xk
sin  (k=1 to n) and taking 

into account the orthogonality condition, we conclude to the following system: 
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where we have considered symmetric hanging of the deck on the cross-section’s 

axis z. 

Thus, it  will be (for ey=0): 
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In order for the above in (5.a) linear homogeneous without second member 

system to have non-trivial solutions, the determinant of the unknowns Un, Vn, 

Wn, Φn   must be equal to zero. 
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The above-mentioned condition concludes to the following equation: 

 0ki         (6)  

Equation  (6) gives the spectrum of the critical values for the buckling angle  ρ 

of the unloaded bridge.        

                                      

 
4 THE CASE OF AN EXTERNAL LOAD 

Let us consider now that the bridge is loaded by the horizontal load qy, applied 

on the bridge as it is shown in figure 3. 

The reactions at the supports are: 
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Fig. 3  The acting external load 
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We search again for a solution under the form of eqs (3.b), and following a 

procedure like the one outlined in §3, we conclude to the system of eqs (5.a) 

with coefficients given by relation (5.b) to (5.f), with the following differences: 

 

2

L

L

k
Rzq

dx
L

xi
sin)x(Edxsincos

L

xk
sin)x(

dx
L

xi
sin)x(dxsincos

L

xk
sin)x(c

dxsincos
L

xk
sin

L

xi
sin)x(A

2

L

R

EI

L

k
Rq

R

EI2

L

k
EIb

2

Myvki

x

x
2

L

0

x

x
2

L

0

L

0
24

z

2

y2

z

4

zvkk

2

1

2

1

(9.a) 

2

L

L

k

R

EI

L

k
RzqS

dx
L

xi
sin)x(Edxcos

L

xk
sin)x(

dx
L

xi
sin)x(dxcos

L

xk
sin)x(c

dxcos
L

xk
sin

L

xi
sin)x(A

2

L

L

k
Rq

R

GI

L

k
S

4

2

2

My2wkk

x

x
3

L

0

x

x
3

L

0

L

0
3

2

y2

d

4

1wkk

2

1

2

1 (9.b) 

2

1

2

1

x

x
2

L

0
y

x

x
2

L

0
y

L

0
y2

2

Myki

dx
L

xi
sin)x(Edxcose

L

xk
sin)x(

dx
L

xi
sin)x(dxcose

L

xk
sin)x(c

dxcose
L

xk
sin

L

xi
sin)x(A

2

L

L

k
zqb

  (9.c) 

 

In order for the above linear homogeneous system in eq. (5.a) to have non-

trivial solution, the determinant of the unknowns Un, Vn, Wn, Φn   must be equal 

to zero. 

This condition concludes to the following equation: 

 0ki         (10)  

Equation  (10), for different values of n, gives the spectrum of the critical 

buckling loads  qy . 
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5 NUMERICAL RESULTS AND DISCUSSION 

In this section, a number of numerical case-studies based on the equations 

obtained in the previous paragraphs have been examined.  

Let us consider four bridges with radii of curvature: R=50m, 100m, 200m, and 

300m. 

Each of the above bridges has stayed-cables whose first edge is anchored onto 

the deck, starting from the point at x1=L/10 and ending at the point x2=9L/10, 

while the other edge is anchored at the top of a pylon whose position is 

determined by the length m1001 , the angle 3/1 , the heights h=150 m, 

ho=50 m, and its inclination by angle 6/1 . A back-stay cable is applied at 

the top of the pylon at angle 4/2 , while its other edge is anchored on the 

same level with the pylon’s foundation. The pylon is designed to be located 

eccentrically, having the projection of the anchorage point of the cables near to 

the first quarter (L/4) of the bridge, in order for us to study the influence of this 

eccentricity on the deformations of the deck. 

For the present analysis, concerning the law of the cables cross-sections change, 

we will adopt the one proposed by Bruno and Golotti [5], analogously modified 

for the present case of a curved in plane c-s bridge: 
cos

g
)x(A

g

 ,  where:  

g   is the uniformly distributed deck’s own load, g  is the initial tension of the 

stays’ curtain due to the above g. It is 
pg

g
g , where a  is the 

allowable stress of the cables (in this example a =12,000 dN/cm
2
) and p is the 

design live load (in this example p=g) 

We consider, in addition, a set of two decks’ cross-sections, a slender (C-S 1),  

and  a  stiff  one 

 (C-S 2) the data of which are given in Table 1, and made from steel S460M 

(with 2
f cm/N460 ). We consider finally that we have a central anchorage 

with ez= ey =0 . 

 

Table 1. Decks’ and pylons’ properties 

 

5.1 The unloaded bridge 

Applying the expressions of §3, and for any combination of the above data, we 

find that the critical angle is always rad14.3critical . In figure 4, we see the 

 m A Jy Jz Jd Jpx Jω Ap J1 J2 Abc 

C-S 1 157 0.20 0.4 6 1.2*10
-5 

3 6 0.20 4 2 0.005 

C-S 2 550 0.70 1 10 1.2*10
-4 

6 10 0.20 4 2 0.015 
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plot of the determinant of equation 6 for the case C-S1 and  

rad16.3to13.3 . 
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Fig. 4  Determination of  the critical angle ρ 

 
5.2 The case of an external load 

Let us consider now that the bridge is loaded by the load qy , as it is shown in 

figure 3. Applying the formulae of §4, we obtain the following plots, where it is 

also shown, by a straight line, the load which plasticize the cross-section of the 

bridge.  
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Fig. 5 Critical loads qy in  relation to the angle ρ, for R=50m  

 

 

Figure 5 shows that for R=50m and the slender cross-section CS 1, the critical 

external load qy increases up to rad7.2 , while for rad7.2 the critical 

load decreases. 

For the stiff cross-section CS 2, we see that the critical external load qy 



Ioannis Raftoyiannis, George Michaltsos                                                                       45 

 

 

increases up to rad82.2 , while for rad82.2 the critical load decreases. 
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Fig. 6  Critical loads qy in  relation to the angle ρ, for R=100m  

 

 

Figure 6 shows that for R=100m and the slender cross-section CS 1, the critical 

external load qy increases up to rad2.1 . For  rad2.1  up to 

rad75.1 , the critical load is the one that plasticizes the bridge’s cross-

section, while for rad75.1  the critical external load qy decreases. 

For the stiff cross-section CS 2, the critical external load qy increases up to 

rad92.0 . For  rad92.0  up to rad27.2 , the critical load is the one 

which plasticizes the bridge’s cross-section, while for rad27.2  the critical 

external load qy  decreases. 

 

1 1.5 2 2.5 3

100

200

300

400

500

qcr

1 1.5 2 2.5 3

100

200

300

400

500

qcr

 
                           CS 1                                                                  CS 2 

 
Fig. 7  Critical loads qy in  relation to the angle ρ, for R=200m  

 

 

Figure 7 shows that for R=200m and the slender cross-section CS 1, the critical 

external load qy increases up to rad80.0 , while for rad80.0 the critical 

load decreases. 
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For the stiff cross-section CS 2, up to rad70.1 , the critical load is the one 

which plasticizes the bridge’s cross-section, while for rad70.1  the critical 

external load qy  decreases. 
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Fig. 8  Critical loads qy in  relation to the angle ρ, for R=300m  

 
Figure 8 shows that for R=300m and the slender cross-section CS 1, the critical 

external load qy decreases. 

For the stiff cross-section CS 2, the critical external load qy up to rad80.0  

is the one that plasticizes the bridge’s cross-section, while for rad80.0 the 

critical load decreases. 

 

6 CONCLUSIONS   

On the basis of the chosen bridge models, we may draw the following 

conclusions: 

1. A mathematical model for studying the static stability of a cable-stayed 

bridge with curved-in-plane deck has been presented. Using the formulae of 

a previous publication of authors and following the classical way of linear 

theory, the above bridge is studied for two cases: (a) the unloaded bridge and 

(b) the case of the loaded bridge by a horizontal load applied vertically to the 

bridge’s axis.  

2. The unloaded bridge, for any combination of geometric data buckles at ρ≈π 

(rad). 

3. For the case of a bridge loaded by an external load, as in 1(b) is described, 

we find out that, for the critical loads in relation to angle ρ,  two branches 

appears. The one resembles as an equilibrium path and the other as a 

stability curve. 

4. For small radii, the governing curves are the resembling as equilibrium paths 

while for greater radii are the resembling as stability curves. 
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