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ABSTRACT: For the analytical study of cables with dampers or movable 

anchorages, finite series of sinusoidal form are usually employed. This paper 

aims to determine the eigenfrequencies and shape functions of stay-cables with 

fixed or movable anchorages in order to make the application of the modal 

superposition method easier and more accurate.   

 

KEYWORDS: stay-cables, dynamic behavior, movable anchorages, dampers 

  

1   INTRODUCTION 
Cable stayed bridges have been known since the beginning of the 18

th
 century, 

but they have been of great interest only in the last fifty years, particularly 

because they have a special shape and also provide an alternative solution to 

suspension bridges for long spans. The main reasons for this delayed 

application were the difficulties in their static and dynamic analysis, the various 

non-linearities, the limited computational capabilities, and the lack of high 

strength materials and construction techniques. There are a great number of 

studies, concerning the static behavior [1-8], the dynamic analysis [9-18], and 

the stability of cable-stayed bridges [19-22]. 

A significant problem, which arises from the praxis, is the cables’ rain-wind 

induced vibrations. Large amplitude Rain-Wind-Induced-Vibrations (RWIV) of 

stay cables is a major problem in the design of cable-stayed bridges. Such 

phenomena were first observed in the Meikonishi-bridge in Nagoya, Japan [23] 

and also later in other such bridges, as for instance on the fully steel Erasmus-

bridge in Rotterdam, Netherlands (1996) and the Second Severn Crossing, 

connecting England and Wales [24]. It was found that the cables were stable 

only under wind action, while they were oscillating under a combined influence 

of rain and wind, leading to large amplitude motions, even for light-to-moderate 

simultaneous rain and wind action. The frequency of the observed vibrations 

was much lower than the critical one of the vortex-induced vibrations, while it 

was also perceived that the cable oscillations took place in the vertical plane 

mostly in single mode; for increasing cable length however, higher modes (up 
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to the 4th) appeared. Most importantly, during the oscillations a water rivulet 

appeared on the lower surface of the cable, which was characterized by a 

leeward shift and vibrated in circumferential directions [23,25,26].  

The produced by such a way, vibrations can reduce the life of the cable and its 

connection due to fatigue or rapid progress of the corrosion. 

Several methods, including aerodynamic or structural means, have been 

investigated in order to control the vibrations of bridge’s stay cables.  

Aerodynamic methods, such as change of the cables’ roughness were effective 

only for certain classes of vibration. Another method is the coupling of the stays 

with secondary wires, in order to reduce their effective length and thereby to 

avoid resonance. This method changes the bridge’s aesthetics.   

Another widely applied method is this of external dampers attached transversely 

to the stay-cables. Many researchers have proposed passive control of cables 

using viscous dampers. 

The last method consist of a system with movable anchorage by using a Friction 

Pendulum Bearing or an Elastomeric bearing to replace the conventional fixed 

support of stay cables. 

For the analytical study of the two last methods are usually used finite series of 

sinus form. 

This paper aims to determine the eigenfrequencies and shape functions of stay-

cables with end conditions like the ones of the cables showed in figure 1, in 

order to make the application of the modal superposition method easier and 

more accurate.   

 
 

Figure 1.   a) Cable with fixed ends  b) Cable with a movable end 

 

2.  ASSUMPTIONS 
a. The studied cable has, under the dead and live loads, the catenary shape 

elastic line, with displacements wo and tensile forces To (see fig.1). Because 

of its shallow form, the above line can be replaced by a parabola of second 

order. 
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Figure 2.  Cables and reference axes 

 

b. Under the action of the dynamic loads py(x,t) and pz(x,t), the cable takes the 

shape of figure 3, with additional displacements ud,  υd,  wd  and tensile 

forces  Td. 

c. The static and dynamic tensile forces are connected with the following 

relations: 

     
)t(HH)t(H

       (t)TT(t)T

do

do
                                (1a,b) 

     where H, is the projection of T on x-axis. 

 

 
Figure 3.  Deformation of the cable 
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dx

ds
)s(m)x(m                                             (2) 

e. We neglect the flexural rigidity of the cables, (as it is proved in [2]).  

f. The studied cables are referred to the inclined axis system 0-xyz of fig.3.  

 

3     THE EQUATIONS OF MOTION 

3.1  Projection on xoz-plane 
 

For a shallow form of the cable, the following relations are valid: 

0dsin

ds/dwsin

1ds/dxcos

z

z

z

                         (3.1a,b) 

 

3.1.1  Equilibrium of horizontal forces  
Taking the equilibrium of horizontal forces in xoz-plane we obtain: 

0dsumdsucdsp
ds

dx
T

ds

dx
T

ds

dx
T

x
 ,  or finally: 

)t,x(pumuc
s
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x

                                    (3.2) 

 

 
Figure 4.  Projection on xoz-plane 

 

3.1.2  Equilibrium of vertical forces  
Taking the equilibrium of vertical forces in xoz-plane we obtain: 

 0dswmdswcdspgdsm
s

w
T
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T z       (3.3a) 
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equation  (2.3a)  becomes:
 

)t,x(pwmwc
x

w

x
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x

w
T zdd2

d
2

2

o
2

d2

d
2

o         (3.3b) 

 

3.2   Projection on xoy-plane 
Taking the equilibrium of vertical forces in xoy-plane through a similar process 

like the one of §3.1.2 we obtain: 
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x

T
x
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d
2
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Figure 5.  Projection on xoy-plane 

 

4   THE PARABOLA APPROACH 
The parabola is widely used especially for shallow forms of cables (see §2.a) as 

it is very close to the catenary one.   

The equation of a parabola passing from the points (0,0), (L,0) and having  

o

o
H

gm
w , is given by the following formula: 
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5   CABLES WITH FIXED ENDS  
In order to determine the eigenfrequencies and shape functions, we have to find 

the tensile Td.  

The following relations are valid: 
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From this last, neglecting the higher order terms we get: 

dx

dw
dw

dx

ds
dsdx o

o , and remembering that do dwΔdw , we obtain: 

dx
dx

dw

dx

dw
dx

dx

ds

dx

ds

ds

ds
dx od                         (5.2) 

On the other hand we have: E  or 

EA

T

E

d                                             (5.3a) 

Because of (5.3), equation (5.2) becomes:  

dx
dx

dw

dx

dw
dx

dx

ds

EA

T
dx od

2

d
 and having the condition  0dx

L

0

, 

the above gives:  

0dx
dx

dw
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od

L

0 z
3

d
                       (5.3b)      

From eq. (5.3b) and after integration by parts with boundary conditions 

0)L(w)0(w dd   we obtain: 

L

0 z
3o

L

0
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o
d

cosEA

dx
L:and

dxw
L
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                           (5.4a,b) 

Therefore the equations of free motion can be written as follows: 

L
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     (5.5a,b,c,d) 

 

5.1  The vertical motion 
Equation (5.5a) because of (5.5c) is written: 
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0dxw
L

w
wmwcwT

L

0
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o
dddo

                           (5.6) 

We are searching for a solution of separate variables under the form: 

)t()x(W)t,x(wd                                       (5.7) 

Therefore, equation (5.6) becomes: 

2
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L
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                        (5.8)     

From equation (5.8) we get the following uncoupled equations: 

0
m
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Equation (5.9a) has the solution: 

o

2
w2

w

L

0oo

2

o
w2w1

T

m
:where

Wdx
LT

w
xcoscxsinc)x(W

    (5.10a,b) 

Equation (5.10a) is an integral-differential equation with degenerate kernel, i.e. 

the classic equation of Hammerstein. Integrating it, we finally obtain: 
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And equation (5.10a) becomes: 

)LwLT(

w
G:where

LsinGxcosc)Lcos1(Gxsinc)x(W

2

ooo
2
ww

2

o

ww2ww1

 

(5.11a,b) 

The boundary conditions are: 

0)L(W)0(W                                  (5.12a,b) 

Introducing equation (5.11a) into the above equations we get: 
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0cLsinGLcosc)Lcos1(GLsin

0c)LsinG1(c)Lcos1(G

2ww1ww

2w1w
  (5.13a,b) 

In order for the above system to have a non-trivial solution, the determinant of 

the coefficients of the unknowns must be zero. This condition concludes to the 

following eigenfrequencies equation: 

0G2LsinLcosG2 ww                           (5.14) 

With λw from equ. (5.10b). 

Finally, from equs. (5.13), (5.14) and (5.111au), one can determine the 

following form of the shape functions: 

LsinG1
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(5.16) 

Easily one can prove that the following orthogonality condition is valid: 

L
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kn
knfor

knfor0
dxWW                                (5.17) 

 

5.2   The lateral motion 
Equation (5.5b) is written: 

0mcT dddo
                                   (5.18) 

Following the previous procedure and searching for a solution of the form 

)t(R)x(V)t,x(d , we conclude to the following equations: 
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Equation (5.19a) has the solution: 

o

2
2
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T

m
:where

xcosdxsind)x(V

             (5.20a,b) 

With boundary conditions 0)L(V)0(V  we conclude to the following 

expressions: 
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6   CABLES WITH MOVABLE END 
In order to determine the tensile Td we are starting from equation (5.3b): 
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From this last, after integration by members and with boundary condition 
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Therefore the equations of free motion can be written as follows: 
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6.1 The vertical motion 
Equation (6.3a), because of (6.3c) gives: 
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Taking into account equation (4), the above becomes: 
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We are searching for a solution of the form: 

)t()x(W)t,x(w d                                        (6.5) 

Introducing (6.5) into (6.4b) we get: 
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The solution of equation (6.6a) is: 
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Therefore, equation (6.9a) becomes: 
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(6.10a,b,c) 

The boundary conditions are: 

0)L(Wk)L(WT

0)0(W

so

                       (6.11a,b) 

Introducing equation (6.10a) into the above conditions we obtain: 

0)DL(coskLsinTc)DL(sinkLcosTc

0)D1(cDc
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2211
 

(6.12a,b) 

In order for the above system to have a non-trivial solution, the determinant of 

the coefficients of the unknowns must be equal to zero. This condition 

concludes to the following eigenfrequencies equation: 

0LsinTDk)D1(LcosT)D1(kDk)D1(DD wwo1s2wwo2s1s212  

(6.13) 

Finally from equations (6.12), (6.13) and (6.10a), one can determine the 

following form of the shape functions: 

)Dx(cos
)DL(coskLsinT
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2wswow

2wswow
1w1n                

(6.14) 

 

6.2   The lateral motion 
Equation (5.5b) is written: 

0mcT dddo
                                    (6.15) 

Following the previous procedure and searching for a solution of the form 

)t(R)x(V)t,x(d , we conclude to the following equations: 
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Equation (6.16a) has the solution: 

o

2
2

21

T

m
:where

xcosdxsind)x(V

              (6.17a,b) 

The boundary conditions are: 

0)L(Vk)L(VT

0)0(V

so

                      (6.18a,b) 

Introducing (6.17a) into the above we get d2=0 and thus the equation of the 

eigenfrequencies is: 

0LsinkLcosT so                           (6.19) 

Finally the shape functions are: 

xsind)x(V 1n                                    (6.20)      

with from equation (6.17b).   

 

 

7   NUMERICAL RESULTS AND DISCUSSION 
Let us consider now a cable with the following characteristics: 

L=250 m,  m=7 kg/m,  To=300000dN, Ec=2.08*10
10

 dN/m
2
. 

We study the following cases: 

 

7.1  Cables with fixed ends 
According to the formula (5.14) of §5.1, we determine the following 

eigenfrequencies: 

1
65

4321

sec6089.15,0093.13

,4059.10,8130.7,2030.5,8186.2
 

while using equation (5.16), we obtain the shape functions of figure 6. 
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Figure  6.   The first six shape functions 

 

7.2     Cables with movable end 

7.2.1  The vertical motion 
 According to the formula (6.13) of §6.1, and for different values of ks, we 

determine the following Table 1 showing the first six eigenfrequencies. 

 

Table  1  
ks ω1 ω2 ω3 ω4 ω5 ω6 

5000 2.3108 4.4900 6.8850 9.4048 11.9368 14.5048 

10000 2.5052 4.7439 7.1430 9.6287 12.1334 14.6755 

50000 2.7104 5.1082 7.6368 10.1758 12.7181 15.2673 

100000 2.7390 5.1658 7.7257 10.2899 12.8588 15.4298 

150000 2.7487 5.1851 7.7563 10.3298 12.9088 15.4888 

200000 2.7536 5.1950 7.7718 10.3500 12.9343 15.5190 

∞ 2.8186 5.2030 7.8130 10.4059 13.0093 15.6089 
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Using equation (6.14)  of §6.1, and for different values of  ks, we determine the 

following plots of figures 7 to 9, showing the first three eigenshapes in relation 

to ks. 
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Figure 7.   The first eigenshape for ks=5000 ____  10000 ……  50000 - - -  200000 _ _ _ 
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Figure 8.   The second eigenshape for ks=5000 ____  10000 ……  50000 - - -  200000 _ _ _ 
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Figure 9.   The third eigenshape for ks=5000 ____  10000 ……  50000 - - -  200000 _ _ _ 

 

7.2.2   The lateral  motion 
According to the formula (6.19) of §6.2, and for different values of ks, we 

determine the following Table 2  with  the first six eigenfrequencies. 

 

Table 2  
ks ω1 ω2 ω3 ω4 ω5 ω6 

5000 2.1415 4.4485 6.8882 9.3966 11.9396 14.5016 

10000 2.3317 4.7072 7.1400 9.6205 12.1349 14.6722 

50000 2.5406 5.0819 7.6244 10.1686 12.7151 15.2640 

100000 2.5706 5.1414 7.7130 10.2834 12.8549 15.4268 

150000 2.5808 5.1617 7.7426 10.3236 12.9047 15.4859 

200000 2.5859 5.1719 7.7580 10.3440 12.9301 15.5162 

∞ 2.6015 5.2030 7.8045 10.4059 13.0074 15.6089 

 

Finally using equation (6.20)  of §6.2, and for different values of  ks, we 

determine the following plots of figures 10 to 12, showing the first three 

eigenshapes in relation to ks. 
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Figure 10.  The first eigenshape for ks=5000 ____  10000 ……  50000 - - -  200000 _ _ _ 
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Figure 11.  The second eigenshape for ks=5000 ____  10000 ……  50000 - - -  200000 _ _ _ 
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Figure 12.  The third eigenshape for ks=5000 ____  10000 ……  50000 - - -  200000 _ _ _ 

 

8   CONCLUSIONS 
On the basis of the chosen cable models, we may draw the following 

conclusions: 

1. A mathematical model for determining and studying the eigenfrequencies 

and eigenshapes of a cable fixed at both ends or fixed at the one and 

elastically joined at the other end has been presented. 

2. Using the classic equations of a cable and determining the related equations 

for a cable with moving end we conclude to an integral-differential equation 

which is solved. 

3. The case of a cable with movable end is more complicated than the fixed. 

4. For the vertical motion, we see that the eigenfrequencies depend on the value 

of ks, and compared to the eigenfrequencies of the corresponding cable with 

fixed ends, we establish that the differences amount from 18% for soft 

springs to 2.3% for hard ones.  

5. For m/dN100000k s , we observe that the cable behaves rather as a cable 

with fixed ends. 

6. The eigenshapes are strongly affected for soft springs and slightly for springs 

with m/dN100000k s . 

7. Similar conclusions are drawn for the lateral motion. 
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