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ABSTRACT: The dynamics of bridges with un-bonded post-tensioned piers 

under ground motion is considered. The actual bridge structure is modeled as a 

3-DOF with 2-masses excited at the base by a simulated seismic motion. The 

effect of the parameters controlling the system dynamics is captured and 

important conclusions for structural design purposes are drawn. 
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1 INTRODUCTION 
Following the large number of strong seismic events striking  large urban 

centers around the world the last 30 years, modern societies have been pushing 

towards the establishment of modern seismic design approaches which 

favor/require construction techniques (e.g. pre-casting), and innovative 

technologies (e.g. seismic isolation) aiming to limit damage, and limit cost of 

repairing and downtime after a seismic event. Traditional design approaches 

based on the development of ductile mechanisms within the structure cannot 

adequately satisfy those requirements.  For infrastructure systems and especially 

for bridges the interruption of functionality as well as the repair costs resulting 

from earthquake damages are of great concern, and have lead engineers to 

propose modern design approaches for these structures. One such modern 

design approach is the utilization of un-bonded post–tensioned piers to support 

the deck [1-7].  This approach limits the strength of the structure in an attempt 

to limit the accelerations in the deck and accordingly minimize the base or pier 

shear forces.  Although such reduction of acceleration response is beneficial, it 

comes with the increase of deformations which could become unacceptable 

causing structural instability.   

To the authors’ knowledge, this quite novel and intuitively correct approach 

lacks theoretical validation, as far as its dynamic instability and bifurcations are 

concerned, in the context of a strictly non-autonomous vector-field formulation, 

dictated by the theory of dynamical systems. The main control parameters of the 

aforementioned problem, the influence of the variation of which will be studied, 
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are the masses and the characteristics of the springs. The strongly coupled 

dynamic equations of motion are tackled within the framework of non-

autonomous vector fields. 

 

2 PROPOSED MODEL: FEATURES - MOTION EQUATIONS 

2.1 Model description and properties 
The considered 3-degrees-of-freedom, two-mass system is depicted in Figure 1, 

and proposed herein for simulating the dynamics of bridges with un-bonded 

post-tensioned piers.  
 

 

Figure 1.  Proposed 3-DOF model 

 

This simplified (stick) model consists of a concentrated mass representing 

the deck, supported by a linear viscoelastic spring representing the bridge 

bearings (expansion or seismic isolation with mild nonlinearities). This pier 

mass is connected to the foundation, via a massless flexible column (modeling 

the pier), which is pin connected to the ground with an additional linear 

rotational spring, simulating the connection of the pier to the foundation and 

characterized by a mild energy dissipation, coming from a linear viscous 

rotational dashpot. In the aforementioned illustration the subscripts “d”, “p”, “I” 

and “f” refer to the deck, the pier, the isolation system and the foundation 

respectively, while “m”, “k” and “c” represent the related masses, spring 

stiffnesses and damping coefficients of each of the above components, where 

applicable.  

 

2.2 Equations of motion and local trivial instability 
Two translational and one rotational generalized coordinates describe the 



Dimitrios Sophianopoulos, Panagiotis Tsopelas     45 

 

dynamic response of the above model, which under simulated earthquake base 

excitation is governed by the system of strongly coupled linear non-autonomous 

equations of motion that follow (
. 
= d/dt) 
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In the right hand sides of these equations the ground motion is simulated, for 

the cases of remote and near earthquakes, via an acceleration function envelope 

f (t) with its characteristics shown in Figure 2. 

 

 

Figure 2.  Typical plots of simulated ground motion for (a) remote and (b) near earthquakes 

 

Evidently, for these simulations, the range of the parameters involved is: 

 
Case (a) : 0.01 A 0.10   ,  0.05 0.30  ,  5 20

Case (b) : 0.01 A 0.10  ,  0.15 0.50  ,  1 12
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Introducing the following dimensionless parameters  
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the system of motion equations 1(a-c) is written in dimensionless form as: 
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where prime indicates differentiation with respect to τ, while the excitation 

function γ(τ) is the dimensionless base acceleration according to Figure 2. 

The system is considered perfect and at rest before the initiation of the 

ground motion. Since no external loading exists, the trivial state represents the 

only valid equilibrium configuration. It would thereafter be of major importance 

to seek out the local stability of this state, by exploring the nature of the roots of 

the corresponding 6
th
-order characteristic polynomial (which in fact are the 

eigenvalues of the trivial equilibrium), via the possible violation of one or more 

o  the  iénard-Chipart conditions [8]. Employing advanced symbolic 

manipulations in Mathematica [9], the above polynomial, equal to: 

   6 5 4 3 2
1 2 3 4 5 6G              (5) 

possesses coefficients αi  i  ,…,6  given by: 
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Rational values of the involved parameters will be used in obtaining 

numerical results. For moderate dimensions of deck and piers and commonly 

used values of damping and stiffness, the following range shall be utilized, in 

seeking possible unstable trivial situations as well as forced dynamic responses: 
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1 2

1 2 3

0.1 k 1 , 0.002 k 0.005 , 0.10 , 2 m 10

0.02 c 4 , 0.04 c 0.1 , 0.005 c 0.08

       

     
 (7) 

Utilizing the powerful FindMinimum and Reduce commands embedded in 

Mathemetica, it was found that only coefficient α3 may be less or equal to zero 

within the range given in (7). This fact however leads to at least one eigenvalue 

of the trivial state with positive real part, implying local instability, i.e. the 

possibility, for an infinitesimal disturbance, of the system to exhibit at least a 

divergent motion, and, under ground motion, the occurrence of complicated 

dynamic phenomena. Two typical situations of such a possibility are given in 

the contents of Table 1.These two cases represent actual bridge structures; e.g. a 

typical 2-span seismic isolated highway overpass. 

 

Table 1. Two characteristic cases of local trivial instability 

Case 

No 
m σ k1 k2 c1 c2 c3 

eigenvalue(s) 

with positive 

real part(s) 

1 3 0.05 0.5 0.0035 0.05 0.05 0.04 0.004±0.37i 

2 1.5 0.03 0.1 0.004 1 0.07 0.08 0.18± .14i 

 
Solving numerically the system of equations 4(a-c) for γ(τ)=0 and 

φ΄(τ)=0.0001, for both cases shown in the above Table, an unbounded motion 

response was found, validating the unexpected theoretical prediction described 

earlier. This response is depicted in the phase-plain portraits [u1(τ), u΄1(τ)] of 

Figure 3. 
 

 

Figure 3.  Unbounded motion exhibited by the system at its trivial state (for both Cases shown in 
Table 1), for an infinitesimal initial disturbance in the absence of base excitation 

 

2.3 Some aspects of non-autonomous formulation 
The forced oscillations of the model governed by eqs.(4) can also be treated as a 

linear non-autonomous 6
th

-order vector field, within the context of the theory of 
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dynamical systems [10]. For such a type of systems, a variety of responses have 

been reported, and as far dynamic stability is concerned, these may vary from 

unbounded motions and simple periodic orbit bifurcations to complicated 

resonance phenomena, without excluding strange or chaotic behaviour [11]. 

Evidently, to perform a rigorous non-autonomous formulation regarding the 

multi-parameter foregoing system would be very intriguing, but for reasons of 

space limitation such an approach is not included herein, but proposed for future 

research. Instead, a straightforward dynamic analysis will be hereafter adopted, 

which as it will be demonstrated may produce very important qualitative results. 

 

3 NUMERICAL RESULTS AND DISCUSSION 
For typical remote and near earthquake simulations, it would be of great interest 

to compare between the dynamic responses of the system corresponding to 

cases related to stable and unstable trivial configurations. In what follows, 

Cases 1 and 2, as in Table 1, will be considered for the unstable situation, while 

two more combinations of parameters (for which the trivial state is stable) will 

be used, namely Cases 3 and 4, with details given in Table 2.The parameters for 

these cases are also representative of actual bridge structures. 
 

Table 2. Two characteristic cases of local trivial stability 
Case 

No 
m σ k1 k2 c1 c2 c3 

3 10 0.05 0.1 0.004 0.2 0.07 0.05 

4 6 0.02 0.3 0.004 0.8 0.02 0.05 

 

In obtaining numerical results, the following simulated ground motion 

parameters were used for assessing the excitation function γ(τ): 

 Remote earthquake simulation  : Α=0.05, β=0.20, Ω=5 

 Near earthquake simulation  : A=0.05, β=0.15, Ω=2 

The straightfarward dynamic analysis lead to two totally different responses, 

which are illustrated throughout Figures 3 and 4, corresponding to iniatially 

unstable and stable trivial states respectively, in terms of phase – plain plots 

[u1(τ), u1΄(τ)]. More specifically, the system under both remote and near 

eartquake simulated excitation was found to exhibit small amplitude vibrations, 

which decay to zero after the end of the forcing function, i.e. to finally rest at its 

trivial stable equilibrium; the free vibration was not depicted in Figure 3 for 

clarity. 

On the other hand, the dynamics of the intially unstable system 

configurations were related to an unbounded motion, leading to very large 

chatastrophic displacements. Same qualitative results were also obtained for 

other combinations of parameters regarding the ground motion (within the afore 

mentioned ranges) not shown herein for brevity. It is postulated that the above 
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findings are directly dependent on the nature of the stability of the trivial state, a 

fact implying that during design this should be taken inti account, in order to 

avoid potential unfavorable and rather unexpected dynamic behavior. 
 

 

Figure 4.  Dynamic response of the initially stable system under (a) remote and (b) earthquake 

simulations 

 

 

Figure 5.  Dynamic response of the initially unstable system under (a) remote and (b) earthquake 

simulations 
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4 CONCLUSIONS 
The non-dimensional formulation of the equations of motion of a bridge 

structure supported by un-bonded post-tensioned piers is presented.  The 

behavior of the springs of the model is assumed linear.  This assumption is 

considered valid as long as the potential nonlinearities of the springs 

representing bridge bearings and pier to foundation connection are small. It was 

shown that there are cases which could represent real bridge structures where 

the dynamic behavior can become unstable.  These phenomena are not common 

but they might become catastrophic and as such the bridge designers should be 

aware and take appropriate actions even at the preliminary design phases. 

Considering the assumptions and limitations of this study, additional work is 

required, focusing on the following issues, in order to reach a much more 

integrated prediction of the real structural response:(a) Adopt a more detailed 

non-linear model to capture bearing and pier-foundation springs behavior, (b) 

Seek the dynamics of thebridge model under real (recorded) seismic excitations, 

and (c) Employ perturbation techniques and capture possible resonance 

phenomena associated with both the linear model utilized in this study and the 

non-linear model for the future study. 
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