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ABSTRACT: In this paper, we utilize a multi-objective approach with 

numerical simulations models for the optimization of the flexural strength for a 

pre-stressed concrete beam. The optimization approach is conducted utilizing five 

factors that are (concrete Young’s modulus, concrete density, steel Young’s 

modulus, steel density, and pre-stressing) which have a limited range. The 

surrogate model that predicts both the strain and the deflection for the pre-stressed 

concrete beam is constructed using least square tool in MATLAB. Twenty one 

numerical simulations are generated using ABAQUS finite element programs 

using the experimental design method of Latin Hypercube. The surrogate model's 

reliability has been tested by comparing the outputs from the numerical models 

with the surrogate models. The coefficient of determination (R2) value for both 

(the maximum principal strain and the maximum deflection outputs) was 1 which 

indicates 100% accuracy. A non-linear multi-objective optimization with 

constrained factor range was conducted based on the Karush-Kuhn-Tucker 

(KKT) method for the surrogate models. At first, we scalarized two objectives 

into single one using harmonic mean, then we used the KKT method which 

worked very well for optimizing the two surrogate models of prediction.  

 

KEYWORDS: Surrogate model; Coefficient of determination; Latin 

hypercube method; Multi-objective optimization; Maximum principal strain; 

Maximum deflection. 

 

1   INTRODUCTION 
The pre-stressing technique has been widely and extensively used in the design 

of civil engineering construction especially in buildings and bridges. The pre-

stressing can be adopted in several aspects for design optimization and aesthetic 
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use in structures by architectural engineers with execution efforts by civil 

engineers. The general aim for pre-stressing is to control the generation of cracks 

in the concrete members and decrease the deflection in the structures. The global 

objective of pre-stressing is to increase the safety of the construction during the 

presence of static loads, live loads, dynamic loads of earthquakes, and wind loads.  

Many research studies have been undertaken to study the pre-stressed 

reinforced concrete structures by the use of theoretical and experimental studies 

to enhance and improve the performance and serviceability of the constructions 

such as buildings, bridges and other civil engineering structures. Bhawar et al, 

(2015) [1] has studied the pre-stressed reinforced concrete beams ( bridge girders) 

by optimizing (minimizing) the overall cost of the design by considering many 

design variables related to the concrete and the steel. They used optimtool in 

MATLAB program for the optimization study. They concluded a cost 

optimization approach proposal for the minimization of the cost in feasible design 

for the pre-stressed reinforced concrete girders. Nariman et al, (2022) [2] 

presented factorial approach to optimize the flexural strength of a reinforced 

concrete beam. They applied surrogate modeling supporting on Box-Behnken 

sampling method to arrange the models of the simulations for prediction analysis. 

They used ATENA program to obtain the exact data of the structural behavior of 

the system. They detected that the optimization approach has efficiently 

controlled and optimized the design for the R C beam. Piatek and Siwowski 

(2022) [3] studied the utilization of CFRP strips in reinforced concrete beams for 

flexural strength. They analyzed the cracks and the yielding of the structural 

member. They recognized that the pre-stressing of the reinforcement has 

positively enhanced and increased the performance and strength of the reinforced 

concrete beam.  

Radnic et al, (2015) [4] investigated the behavior of the pre-stressed concrete 

beam. They considered many factors to optimize the performance of the structure 

with the use of actual experimental specimens and laboratory tests. They realized 

that the pre-stressing magnitude affected positively the performance and the 

serviceability of the reinforced concrete beams and they mentioned the necessity 

for optimizing this behavior in separate research studies to control the cracks and 

the deflection of the structural member. Bischoff et al, (2018) [5] they studied the 

effect of moment of Inertia factor in predicting the deflection and the crack of 

partial adopted pre-stressed concrete beams and slabs. They presented a new 

approach to predict the performance of the structural members. They 

recommended the use of trilinear approach in the calculation of deflections in 

cracked pre-stressed members.   

It has been extremely proven that the pre-stressing technique is greatly 

beneficial for building bridges and all structures to increase the strength of the 

structural system and enhance and ensure the safety of the constructions. Despite 

the fact that many researches have been undertaken to use optimization of pre-

stressing aspect, but still many approaches of optimizations haven't been applied 
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to enrich the design consideration by civil engineers. In this paper, we will apply 

a multi-objective optimization approach with Karush-Kuhn-Tucker approach to 

optimize the flexural behavior of the pre-stressed concrete beam members. The 

optimization process would be applied by the utilization of numerical analysis 

and simulation by ABAQUS finite element program and MATLAB codes. The 

Latin Hypercube experimental design method would be dedicated for the process 

to generate the models and the construction of two surrogate models of the cracks 

prediction for the pre-stressed concrete beam.      

 

2   RESPONSE SURFACE MODEL 

The general formulation of an optimization problem and all of its elements are 

presented in, where the mathematical formulation was drawn from. 

The general mathematical formulation of an optimization case is: 

𝑀𝑎𝑥(𝑚𝑖𝑛). 𝑓𝑖 (𝑥),                   𝑖 = 1, 2, … , 𝑀 

subject to:                   

𝑔𝑗(𝑥),                                      𝑗 = 1, 2, … , 𝐽 

𝑐𝑘(𝑥),                                     𝑘 = 1, 2, … , 𝐾, 

where  𝑿 =  (𝑥1, 𝑥2, . . . , 𝑥𝑑) 𝑋 ∈  [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥] ⊂ 𝑅𝑑. 

The objective functions are denoted by 𝑓𝑖 (𝑥), and the problem's constraints are 

represented by 𝑔j(𝑥) and 𝑐k(𝑥). Each feasible solution, which comprises input 

values from the search space, is a set of design variables 𝑋 that satisfy the 

requirements [6]. 

 

2.1  Constraints based classification 
The optimization cases for this branch can be assigned into multiple categories 

which are being detailed in the following sections [7]. Unconstrained 

optimization and constrained optimization cases. 

  

2.2 Nonlinear Programming Problem (NLPP) 
A general optimization case is to adopt 𝑛 decision variables (𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏) from 

a provided feasible area in such a way for the optimization (minimization or 

maximization) of a nominated function 𝑓 (𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏)𝑇 which has the 

controlling variables. The case is named a nonlinear programming problem 

(NLPP) when the function is nonlinear and the feasible area is determined by 

constraints that are nonlinear [8]. 

 

2.3 Multi-Objective Optimization Programming Problems (MOOPP) 
A case with a multi-objective optimization problem is of the from  

Optimize {𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑘 (𝑥)} 

subject to:                                          𝑥 ∈  𝑆, 
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where for 𝑘 ≥  2 objective functions 𝑓𝑖: 𝑅𝑛  → 𝑅, the decision (variables) vectors 

𝑿 =  (𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏)𝑇 are allocated in the non-empty feasible area S which is 

considered a group of the decision variable area Rn. When all the functions and 

the constraints that are forming the feasible area are linear, then the multi-

objective optimization case is called linear. If at least one of the objectives or the 

constraint functions is nonlinear, the problem is called a nonlinear multi-objective 

optimization problem. Multi-objective optimization problems are usually solved 

by scalarization approach. The scalarization means that the problem is converted 

into a single (scalar) or a family of single objective optimization problems [9]. 

 

2.4  Multi-Objective Quadratic Programming Problems (MOQPP) 
The mathematical form of a multi-objective quadratic programming problem is 

[9]: 
Max. [f1(x), f2(x), …, fr(x)] 

Min. [f(r+1) (x), f(r+2) (x), …, fs(x)], 

 fk(x)= xT Qk x+𝐶𝑘
𝑇 x,   

k = 1, 2,…, r, r+1,…, s. 

subject to:                   

Ax [ ≥ ,  ≤ , =] B, 

where 𝑄 is an (𝑛 × 𝑛) symmetric matrix of coefficients, 𝒙 is an 𝑛-dimensional 

vector of decision variables, 𝐶 is the n-dimensional vector of constants, 𝐵 is m-

dimensional vector of constants, 𝐴 is (𝑛 × 𝑚) matrix of coefficients, 𝑟 is number 

of objective functions to be maximized, 𝑠 is the number of objective functions to 

be maximized and minimized and (𝑠 − 𝑟) is the number of objective functions 

that is minimized, all vectors are assumed to be column vectors unless transposed 

(𝑇). 
 

3  KARUSH-KUHN-TUCKER METHOD (KKT) 
The optimality conditions for a constrained local optimum are called the Karush 

Kuhn Tucker (KKT) conditions and they play an important role in constrained 

optimization theory and algorithm development. The KKT conditions for 

optimality are a set of necessary conditions for a solution to be optimal in a 

mathematical optimization problem. They are necessary and adequate conditions 

for a local minimum in nonlinear programming problems. The KKT conditions 

consist of the following elements, Consider the following optimization problem 

[10]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙) 

Subject to: 

𝑔𝑖(𝑥)  ≤  0,    𝑖 = 1, 2, … , 𝑚 
𝑥 ≥  0, 

where, 𝑓(𝑥) is the objective function, and 𝑔𝑖(𝑥) are inequality function of the 
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constraints. Defined the Lagrange function by  𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑ 𝜆𝑖𝑔𝑖(𝑥)𝑚
𝑖 . 

Stationarity of the gradient of the Lagrange multipliers must be zero at the optimal 

point, ∇𝑓(𝒙∗) + ∑ 𝜆𝑖∇𝑔𝑖(𝒙∗)𝑚
𝑖 = 0, for all 𝑖. 

 

4   RESPONSE SURFACE MODEL 
A response surface model (RSM) is a tool which is utilized to manage the data in 

both mathematical and statistical approaches to build multi-objective functions 

for the process of optimization of a system. The RSM considers the global effect 

of many input variables with different mathematical terms such as linear, 

quadratic, and interactions between the variables. The RSM determines the type 

of the relation between the involving variables and detecting the extent of 

controlling the output result by the mentioned variables [2, 11]. 

The exact data for the construction of the elements of the RSM is collected 

through many ways such as equations, laboratory test, and numerical simulations. 

The gathered data would be further processed to determine the regression 

coefficients by least square approach, were large matrices are solved in the 

process. Finally, the objective functions are constructed. The equation is 

representing the relation between the variables in the system which is a function 

denoted by y, and the variables are (𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏). Generally, the function is 

being tested for the reliability to fully represent the system output. The equation 

is written as follows: 

               𝑦 =  𝑓(𝑿)𝛽 + 𝜀                                          (1)  

Where the vector 𝑿 = (𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏), and the function 𝑓 (𝑿) is a vector of 

𝑛 elements which contains many terms as mentioned above. The syntax β 

represents a vector of 𝑘 number of regression coefficients. And 𝜀 is a random 

experimental error of experiments which is always random and considered to 

have a mean of zero value. The term 𝑓(𝑿)𝛽 is the mean output of the system. In 

our study, we will consider multi-objective function y which provides prediction 

for two outputs. The following equations (1) and (2) are used in linear cases and 

nonlinear cases.The linear problem is represented by Eq. (2):  

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝒙𝒊
𝑘
𝑖=1 + 𝜀                                     (2) 

While the non-linear problem is represented by Eq. (3): 

        𝑦 = 𝛽0 + ∑ 𝛽𝑖𝒙𝒊
𝑘
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝒙𝒊𝒙𝒋𝑖<𝑗 + ∑ 𝛽𝑖𝑖𝒙𝒊

𝟐𝑘
𝑖=1 + 𝜀             (3)                                

The vector 𝛽 is calculated by the least square method. Generally, Eq. (3) is being 

updated to represent a matrix:  

                        𝑌 = 𝛽𝑿 + 𝜀                                            (4)                                                                               

Eq. (4) is solved using the following formula: 

                                      𝜷 = (𝑿𝑇𝑿)−1𝑿𝑇Y                                        (5) 

where 𝑿𝑇 represents the transpose matrix 𝑿 and the term (𝑿𝑇𝑿)−1  is the inverse 
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of the resulting matrix (𝑿𝑇𝑿) [2]. 
 

4.1  Variable limit values 
A surrogate models is created by dedicating five variables utilizing the Latin 

Hypercube design approach by creating 21 models of the pre-stressed concrete 

member in ABAQUS program. The adopted models are involved in the 

simulation process to determine the maximum principal strain and the maximum 

deflection data. Table 1 shows the adopted factors and their range values. 

 

Table 1. Variable limit values 

Variable Symbol Variable Limit Value 

x1 Concrete Density (𝝆c) kg/m3 2200 – 2600 

x2 Concrete Young’s Modulus (Ec) GPa 24 – 35 

x3 Steel Density (𝝆s) kg/m3 7800 – 8000 

x4 Steel Young’s Modulus (Es) GPa 190 – 230 

x5 Pre-stressing (MPa) 1.2 – 2 

 

4.2   Latin hypercube sampling method 
The generated 21 models is organized in Table 2 (Appendix 1). The numerical 

models were constructed using the design sampling method of Latin Hypercube 

in parallel with MATLAB. Five factors were considered (concrete density, 

concrete Young’s modulus, steel density, steel Young’s modulus, and pre-

stressing) [12]. 

 

4.3  Surrogate models  
A surrogate model is that tool which is used to predict the behavior or the output 

of any system. The prediction process is being established through an equation 

which represents the relation between the output and the dependent variables. The 

reliability of the surrogate models is then guaranteed through the use of the 

coefficient of determination R2. We construct the surrogate models for this 

purpose and will be further processed for optimization using the KKT Method. 

Concrete Density, Concrete Young’s Modulus, Steel Density, Steel Young’s 

Modulus, Pre-stressing are the five input factors taken into account. The factors 

are categorized by their minimum magnitudes for each surrogate models. The 

model consists of five components: linear, nonlinear (quadratic curve), and 

interaction terms, as shown in Eq. (6). 
 

y=β0+β1x1+β2x2+β3x3+β4x4+β5x5+β6x1
2+β7x2

2+β8x3
2+β9x4

2+β10x5
2+β11x1x2+β12x1  

      x3+β13x1x4+β14x1x5+β15x2x3+β16x2x4+β17x2x5+β18x3x4+β19x3x5+β20x4x5 

(6)                                     

where y is the prediction output, 𝛽0 is a constant coefficient term, and x1, x2, x3, 

x4, and x5 are the adopted variables and β1, β2, β3, β4, and β5 are the first degree 

coefficients; and β6, β7, β8, β9, and β10 are the quadratic coefficients; β11, β12, …, 
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β20 are the coefficients of interactions between the variables. 

Surrogate modeling analysis is important to generate a tool for prediction of 

the outputs, where the results collected from the exact output and the results 

collected from the surrogate models are being verified. The coefficient of 

determination R2 is being utilized to recognize the strength of the surrogate 

models. The limit value of the R2 is bounded between (0 and 1). R2 uses a 

verification between the exact outputs and the outputs of surrogate models. The 

magnitude near 1 means efficient surrogate models [2, 13, 14]. 

 

5   FINITE ELEMENT MODEL 
The pre-stressed concrete beam is created in ABAQUS program with dimensions 

(874*15.24*30.48) cm. The beam is loaded by multiple loads in for locations (see 

Figure 1). The beam has two pre-stressed tendons of 1.12 cm diameter for each, 

and dour steel reinforcement bars located in top and bottom of the beam with a 

diameter of 2 cm for each steel bar. The numerical model is constrained at the 

supports locations. The constraint is different where there is a need of releasing 

the support in one location to move in horizontal direction to expel the stresses 

generated due to loading. 

 

 
Figure 1.  Finite element model 

 

6    RESULTS AND DISCUSSION 

6.1  Maximum principal strain 
Table 3 (Appendix 2) shows the data of the regression coefficients, which were 

used to generate the surrogate model for the maximum principal strain output. 

The function of the surrogate model is denoted by f1: 
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f1 = 0.00386184346766488325 x1 - 0.875776821696116215 x2 - 

0.00870462141076268974 x3 + 0.291492460782349511 x4 - 

10.9396975656360713 x5 - 0.000000581775896419806391 x1
2 + 

0.00577282382463858444 x2
2 + 0.000000830879035451985032 x3

2 + 

0.000509010212177061309 x4
2 - 0.259775660658358809 x5

2 + 

0.0000618323357507319108 x1x2 + 0.000000129745106341937457 x1x3 - 

0.000026115580799787565 x1x4 + 0.000811829966181199093 x1x5 + 

0.000120219688441336623 x2x3 - 0.00227804444100949204 x2x4 - 

0.0561297428276724856 x2x5 - 0.0000500968454555416659 x3x4 + 

0.00107367441029970281 x3x5 +  0.0148404413293488307 x4x5 + 

22.8395039952906588                                                                                    

(7)               
 

The R2 for the maximum principal strain outputs was R2=1 that indicates an 

excellent efficiency of the surrogate model for the prediction of the maximum 

principal strain in the pre-stressed concrete beam models. 

 

6.2  Maximum deflection 
Table 4 (Appendix 3) lists the information of the regression coefficients that were 

used to construct the surrogate model for the output of maximum deflection. 

The function of the surrogate model that calculates the maximum deflection 

output in the pre-stressed concrete beam is represented by f2\; 
 

f2 = 0.004692523831451757362 x1 - 1.37024823990113387 x2 - 

0.0960969224374603614 x3 + 0.300262428518838854 x4 + 

14.0472661880508154 x5 + 0.0000000317971680024788688 x1
2 + 

0.00290688831528073307 x2
2 +0.00000660654892663867123 x3

2 + 

0.000206101165782022201 x4
2 - 0.109276724414906985 x5

2 

+0.0000297561656730545783 x1x2 - 0.000000607654352963762875 x1x3 - 

0.000007329563486436254 x1x4 + 0.000340052233457333142 x1x5 + 

0.000181719312768606514 x2x3 - 0.00128278265218584585 x2x4 - 

0.0266285784473415859 x2x5 - 0.0000434675525815576022 x3x4 - 

0.0019449733407285975 x3x5 +  0.00795040656168949732 x4x5 + 

351.676280216378406                                                                                    

(8)                            

The R2 for the results of the exact outputs and the surrogate model outputs was 1, 

which is an excellent efficiency of the surrogate model in calculating the 

maximum deflection in the pre-stressed concrete beam models.   
 

7    COEFFICIENT OF DETERMINATION RESULTS    

7.1 Maximum principal strain 
The R2 for the maximum principal strain for the exact outputs and the surrogate 

models’ outputs was 1, which indicates an excellent efficiency of the surrogate 

model to calculate the maximum principal strain output in the pre-stressed 
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concrete beam model (Figure2), which is actually very satisfactory. 
 

 
Figure 2.  Coefficient of determination - Maximum principal strain 

 

7.2  Maximum deflection 
The R2 value for the maximum deflection output was 1, which is an excellent 

value indicating the efficiency of the surrogate model to calculate the maximum 

deflection in the pre-stressed concrete beam model (Figure 3), which is very 

satisfactory. 

 
Figure 3.  Coefficient of determination - Maximum deflection 
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8   SIMULATION RESULTS 
The output of the tensile damage generated in the reinforced concrete beam when 

dedicating a 1.8 MP for the pre-stressing variable leads to a certain appearance 

of the tension stresses in the tension zones in both sides (see Figure 4). It is 

considered a logical behavior of the structural member under the external load 

which can be controlled through the optimization process by studying the other 

results.  While the decrease of the pre-stressing in the tendons to 1.3 MP results 

in an increase in the generation and propagation of the tension stresses in the same 

locations and further deflection in the reinforced concrete beam (see Figure 5). 

Finally, when the pre-stressing is further decreased to 0.8 MP it would increase 

the tension stresses highly with a great propagation to the top region of the beam 

(see Figure 6). 

 

 
Figure 4.  Tensile damage - Prestressing = 1.8 MPa 

 

 
Figure 5.  Tensile damage - Prestressing = 1.3 MPa 

 

The increase of the pre-stressing variable is obviously resulting in the decrease 

of the generated tension stresses in the tension zones. It is known that concrete is 

weak in tension compared to compression when externally loaded where it 

becomes the ongoing step for cracking and the failure of the entire structural 

system under loading.  
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Figure 6.  Tensile damage - prestressing = 0.8 MPa 

 

The control of the failure and the propagation of such tension stresses is to 

optimize the design of the reinforced concrete beam with an optimized design of 

pre-stressing and optimized mechanical properties of the structure. The optimized 

control of the tension stresses is directly is a control of the deflection and increase 

of the factor of safety as a stiff structural member.   

   

9    OPTIMIZATION RESULTS  

9.1 KKT conditions with two objective functions 
To build the constraints, we have 5 variables on the range in Table (1). There are 

different ways to construct the constraints. For the first constraint we combine 

the variables which is greater than the combined of the lower ranges: 

900x1+x2+0.5x3-20x4-x5 ≥ 1980123 

In second constraint we combine the variables which is less than the combine of 

the upper ranges  

2x1-10x2+0.02x3+x4+0.00001x5 ≤ 5240 

 

9.2  Multi-objective optimization problems 
We use the method of KKT to solve them, because the two objectives are non-

linear quadratic. Sen [15], presented a method convert a multi-objective to a 

single one, them solve with the same constraints. Many techniques can be used 

for this purpose [16]. Among these techniques, we used the harmonic mean.  

We use the harmonic mean to convert them into single objective as follows: 

The harmonic means that HM of asset of data is defined as the reciprocal of the 

arithmetic average of the reciprocal of the given values as in Eq (9). If (x1, x2, …, 

xn) are n observations, then:  

                                             𝐻𝑀 =
𝑛

∑
1

𝒙𝒏

𝑛
𝑖=1

                                                   (9)     

To combine the objective functions, we determine the common set of the 

variables from the following combined objective function. Let 𝑀𝑎𝑥. 𝑓𝑖 = 𝑚𝑖, 𝑖 =
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1, … , 𝑟 and 𝑀𝑖𝑛. 𝑓𝑖 = 𝑚𝑖, 𝑖 = 𝑟 + 1, … , 𝑠. To formulate the problem to single 

objective and by using harmonic mean [17], we have Eq. (10) 

𝑀𝑎𝑥. 𝑔 = ∑
𝑀𝑎𝑥.𝑓𝑘

𝐻𝑀1

𝑟
𝑘=1 − ∑

𝑀𝑖𝑛.𝑓𝑘

𝐻𝑀2

𝑠
𝑘=𝑟+1                         (10) 

where HM1 and HM2 are the harmonic mean for maximized and minimized 

objectives, respectively. In this research, the objective functions of f1 and f2 are 

minimized, the objective function Max. g becomes:  

                                  𝑀𝑎𝑥. 𝑔 = − ∑
𝑀𝑖𝑛.𝑓𝑘

𝐻𝑀2

𝑠
𝑘=𝑟+1  .                                   (11) 

So, thus, the multi-objective Quadratic programming problem (MOQPP) can be 

defined as in (Appendix 4). The algorithm is constructed as follows: Solving the 

objective function Min. fk by the KKT-method. Go to the next step where mi is 

the optimum value for Min. fi, HM2 the harmonic mean for Min. fi. Optimize the 

Eq. (11) under the same constraints. Substitute the optimal value to the individual 

objective to get optimal solution for each one. Finally, stop. 

𝑀𝑖𝑛. 𝑓1 = 0.002592178874560303,  

and 𝑀𝑖𝑛. 𝑓2 = 0.02346141114221331. 

So, the harmonic mean is 0.004668544664367934. Now, divide the 

coefficients of each objective functions by 0.004668544664367934, and then 

sum them. The objective function of 𝑀𝑎𝑥. 𝑔 with same constraints in (Appendix 

5). Solving 𝑀𝑎𝑥. 𝑔 by KKT method, 𝑀𝑎𝑥. 𝑔 =  −18.96644833081395 and the 

optimal point of Max. g is: 

 x*= (2200.256613152524, 28.94127028963871, 7893.72803972978, 

204.1186849607102, 1.383428211629868), which is in the range of the feasible 

solution. 

 

10   CONCLUSIONS 
The flexural crack control in reinforced concrete beams are a major task for 

design engineers, whereas a pre-stressing technology is a must. The adopted 

nonlinear multi-objective optimization approach is critical need to fully control 

the design. The concluded findings of our research study are listed as follows; 

1- The surrogate models of the prediction manifested 100% accuracy in 

predicting the outputs of maximum principal strain and maximum deflection 

for the pre-stressed concrete beam. The criteria of the reliability were the 

coefficient of determination R2 which was 1 for both surrogate models.   

2- The nonlinear multi-objective optimization approach displayed a strong 

efficiency in optimizing the values of the five factors in addition to the 

optimized surrogate models.  

3- The process of controlling the flexural cracks is highly reliable through the 

application of the optimized values of the five factor as numerical simulation 

by ABAQUS program and through the application by the surrogate models. 



Kareem et al.                                                                                                                    33 

 

 

4- The validation of the results for the optimization process were attained which 

is an evidence of a successful and smooth optimization approach, because any 

lateral or uncertain error will result in wide errors and failure in determining 

the targeted objectives of the study.   
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APPENDICES  
Appendix (1): 

Table 2. Arrangement of 21 models 
Mode l x1 x2 x3 x4 x5 

1 2475.30506428678 32.43692234751 7802.72002227796 211.33365441304 1.65709254171 

2 2360.93661406054 26.06344789230 7893.54412370220 194.45599015772 1.88979019537 

3 2548.67549027058 32.28888157126 7809.64905952394 221.39059696123 1.48748580925 

4 2334.71439824658 26.92477855004 7856.98096066760 210.32050207467 1.25415539027 

5 2372.49123221203 33.56487094044 7904.38289076600 199.64919483272 1.98797693185 

6 2449.46165086999 25.10369034679 7859.00637588633 204.76861533686 1.42879935714 

7 2226.58845168778 34.46264826798 7829.90674013737 206.16913072163 1.73394693777 

8 2315.69124272412 29.16603841371 7927.94045211430 222.87558497814 1.27754103272 

9 2312.05816650644 30.06357324958 7945.19892684802 193.32539327053 1.86033275280 

10 2269.69901889722 34.59951263806 7823.62366889154 218.86555284079 1.93424159328 

11 2580.25275345555 31.05862813980 7984.89614788142 227.07018205335 1.83489361697 

12 2208.79295522872 26.22384309769 7941.04063784599 201.59974069702 1.78960865652 

13 2528.81468950047 24.95867700585 7909.49103368115 217.90341636163 1.41815792893 

14 2444.16719042563 24.17142871119 7999.51509873660 197.74223831864 1.66787127511 

15 2287.11911120844 31.53308665856 7923.27527863640 214.89958198260 1.55131361690 

16 2426.70156272325 28.71069966743 7844.42669142934 196.49961836115 1.61595945830 

17 2498.98625587278 27.27892948736 7965.41995469759 229.80616736308 1.38203504227 

18 2242.28337881971 29.24242427345 7972.45735414273 214.06309344815 1.72556344785 

19 2589.77218253868 33.36142881288 7869.77717498634 208.52219898101 1.32860574073 

20 2509.16054413381 28.00159950652 7879.18793294762 191.39790952125 1.21046837655 

21 2397.35345436898 30.70943781338 7955.27862101716 225.75897400109 1.51107184047 

 
Appendix (2): 

Table 3. Regression coefficients for maximum principal strain 

Coefficient Value 

β0 22.8395039952906588 

β1 0.00386184346766488325 

β2 -0.875776821696116215 

β3 -0.00870462141076268974 

β4 0.291492460782349511 

β5 -10.9396975656360713 

β6 -0.000000581775896419806391 

β7 0.00577282382463858444 

β8 0.000000830879035451985032 

β9 0.000509010212177061309 

β10 -0.259775660658358809 

β11 0.0000618323357507319108 

β12 0.000000129745106341937457 

β13 -0.000026115580799787565 

β14 0.000811829966181199093 
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Coefficient Value 

β15 0.000120219688441336623 

β16 -0.00227804444100949204 

β17 -0.0561297428276724856 

β18 -0.0000500968454555416659 

β19 0.00107367441029970281 

β20 0.0148404413293488307 

 

Appendix (3): 

Table 4. Regression coefficients for maximum deflection 

Coefficient Value 

β0 351.676280216378406 

β1 0.00469252383145175736 

β2 -1.37024823990113387 

β3 -0.0960969224374603614 

β4 0.300262428518838854 

β5 14.0472661880508154 

β6 0.0000000317971680024788688 

β7 0.00290688831528073307 

β8 0.00000660654892663867123 

β9 0.000206101165782022201 

β10 -0.109276724414906985 

β11 0.0000297561656730545783 

β12 -0.000000607654352963762875 

β13 -0.000007329563486436254 

β14 0.000340052233457333142 

β15 0.000181719312768606514 

β16 -0.00128278265218584585 

β17 -0.0266285784473415859 

β18 -0.0000434675525815576022 

β19 -0.0019449733407285975 

β20 0.00795040656168949732 

 

Appendix (4): 
Min. f1 = 0.00386184346766488325 x1 - 0.875776821696116215 x2 - 

0.00870462141076268974 x3 + 0.291492460782349511 x4 - 

10.9396975656360713 x5 - 0.000000581775896419806391 x1
2 + 

0.00577282382463858444 x2
2 + 0.000000830879035451985032 x3

2 + 

0.000509010212177061309 x4
2 - 0.259775660658358809 x5

2 + 

0.0000618323357507319108 x1x2 + 0.000000129745106341937457 x1x3 - 

0.000026115580799787565 x1x4 + 0.000811829966181199093 x1x5 + 

0.000120219688441336623 x2x3 - 0.00227804444100949204 x2x4 - 

0.0561297428276724856 x2x5 - 0.0000500968454555416659 x3x4 + 

0.00107367441029970281 x3x5 +  0.0148404413293488307 x4x5 + 
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22.8395039952906588 

Min. f2 = 0.004692523831451757362 x1 - 1.37024823990113387 x2 - 

0.0960969224374603614 x3 + 0.300262428518838854 x4 + 

14.0472661880508154 x5 + 0.0000000317971680024788688 x1
2 + 

0.00290688831528073307 x2
2 +0.00000660654892663867123 x3

2 + 

0.000206101165782022201 x4
2 - 0.109276724414906985 x5

2 

+0.0000297561656730545783 x1x2 - 0.000000607654352963762875 x1x3 - 

0.000007329563486436254 x1x4 + 0.000340052233457333142 x1x5 + 

0.000181719312768606514 x2x3 - 0.00128278265218584585 x2x4 - 

0.0266285784473415859 x2x5 - 0.0000434675525815576022 x3x4 - 

0.0019449733407285975 x3x5 +  0.00795040656168949732 x4x5 + 

351.676280216378406 

Subject to:  

900x1+x2+0.5x3-20x4-x5 ≥ 1980123 

2x1-10x2+0.02x3+x4+0.00001x5 ≤ 5240 

 2200 ≤ x1≤ 2600 

24 ≤ x2 ≤ 35 

7800 ≤ x3 ≤ 8000 

190 ≤ x4 ≤ 230 

1.2≤ x5 ≤ 2. 

 

Appendix (5): 
Max. g = - 1.832341321355828x1+481.0974774943779x2 + 

22.44843979926064x3-  126.7536099242407x4 - 665.6396898444325x5 + 

0.0001178051765499791 x1
2 -  1.859190125386633x2

2 - 

0.001593093457765515x3
2 - 0.1531765098912042x4

2 + 79.05084166592869x5
2- 

0.01961821252837612x1x2 + 0.000102367928547285x1x3 + 

0.007163933664700604x1x4 - 0.2467326077932005x1x5 - 

0.06467518743356011x2x3 + 0.7627274341772699x2x4 +  

17.72679222856243x2x5 + 0.02004144862342595x3x4 + 

0.1866318077834773x3x5 -  4.881788550720429x4x5 - 80221.09910827513 

Subject to:  

900x1+x2+0.5x3-20x4-x5 ≥ 1980123 

2x1-10x2+0.02x3+x4+0.00001x5 ≤ 5240 

2200 ≤ x1≤ 2600 

24 ≤ x2 ≤ 35 

7800 ≤ x3 ≤ 8000 

190 ≤ x4 ≤ 230 

1.2≤ x5 ≤ 2. 

 

 


