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ABSTRACT: The study deals with obtaining a design process for 2-hinged and 

3-hinged deck-arches using principles of 2D graphic statics, parametric and 

mathematical modelling. The iterative process starts with the dead load of a 

straight horizontal deck and the vehicular live loads; it proceeds to incorporate 

the self-weight of the funicular arch and the spandrel piers. At every step the 

shape is modified based on funicular form finding which alters the lengths and 

weights of the spandrel piers which in turn affect the arch profile. The process 

repeats until convergence is achieved. The dynamic (vehicular) loads lead to an 

envelope of funicular profiles, which are then compared with a generic parabolic 

and a generic catenary profile of the same span and rise. Results like in-plane 

moments, horizontal thrust, vertical reactions, axial forces, deflections are 

compared.  
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1 INTRODUCTION 
There is immense scope for provision and improvement of road network 

connectivity, especially in the hilly regions of India and neighbouring states of 

Nepal, Bhutan, etc. (4). Amongst all types of bridge superstructure typologies, 

arch bridges have a significant scope in form-finding; funicular form-finding 

methods in arches have been explored in detail by stalwarts like Antonio Gaudi 

(for static loads) and bridge designers in particular like Robert Maillart (for 

moving loads). The idea behind a funicular shape is the transfer of loads through 

pure compression as inverted to a tied chain model with similar load arrangement 

hanging down due to gravity in pure tension (11) 

While substantial research has already been done on funicular form finding in 

the past century, through the utilization of parametric tools and computer-

generative form finding, a process for obtaining the ‘perfect arch’ can be 

developed in the case of both 2-hinged and 3-hinged Deck Arch Bridges. 

In the current design practice, for a given span a rise is chosen by the designer 
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based on the aesthetic considerations. Circular arch/segmental arch profiles are 

chosen for masonry bridges of short to medium span and for steel bridges in some 

cases. The parabolic profile is mathematically proven to be better suited for 

uniformly distributed loads producing zero or minimum in-plane bending 

moments along the arch rib. Therefore, parabolic arch profiles are increasingly 

used for open-spandrel steel and concrete bridges in the past-half century. 

 

1.1  Graphic statics 
Graphic Statics is the field of structural mechanics that involves translation of 

algebraic problems of statics into graphical representations. The external forces 

are represented as force vectors and through basic vector algebra, they are 

resolved into resultant directions (12). Although graphical methods eliminate the 

use of error-prone arithmetic equations, they are on a decline now because the 

traditional methods of graphic statics involved the use of the classical hand 

draughting methods. This study reinvigorates the area of graphic statics through 

modern CAD modelling tools to solve and analyse arch problems. 

In Graphic Statics, external forces are drawn to a predefined scale called the 

force scale. The actual line diagram of the structure (beam/truss/arch) is drawn to 

a suitable scale called the space scale. This diagram is called the structure 

diagram. Alongside, a polar diagram is converted with the same forces drawn in 

a line tail to end. With a suitably chosen polar point, radial lines are drawn 

originating from it towards the tails of each of the force vectors drawn within this 

polar diagram. Now these radial lines are borrowed from here to the structure 

diagram resulting in a funicular polygon. Since there is equilibrium of forces 

considered in the system, graphic statics is a self-checking process (15). 

 

1.1.1  Eddy’s Theorem 
The Eddy’s Theorem is a useful part of Graphic Statics that helps in quick 

analysis of the section forces through the use of the generated Funicular Polygon. 

It states that “the bending moment at any section of a structural element is 

proportional to the vertical intercept the pressure line and the axis of the 

structure.” (14) 

 

1.2  Funicular structures  

A funicular structure is one which can achieve a stable equilibrium under the 

action of loads. The term funicular comes from the Latin word funis meaning 

rope. Just as a rope sags and assumes a curvilinear shape under its own weight, a 

funicular geometry is achieved under the action of a specific set of loads. To 

understand funicular structures a detailed understanding of a catenary is needed. 

(11). (Figure 1) 
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Figure 1. List of catenary string shapes with 

loads (left) with their respective funicular 

shapes (right). the funicular shapes are 

'perfect' for the particular loads on the string. 

(11) 

 

Figure 2. Difference in a parabolic (red) and a 

catenary profile (catenary). 

 

1.2.1  Difference between parabolic and catenary arches  
The Catenary curve is similar to the Parabola. The only difference is observed 

near the springing points, where owing to the greater slope of the sagging rope, 

the catenary weight distribution is much congested in the horizontal direction. As 

we move further towards the center, the cable becomes horizontal and the weight 

distribution stabilizes itself and becomes uniform. This results in greater 

deflections in the case of the catenary, as can be observed in the outward profile 

(blue) as compared with the parabolic profile (Figure 2). 

 

2 TEST STUDY 1 - FORM FINDING FOR MOVING LOADS ON A 

3-HINGED DECK ARCH 
This section deals with form-finding of a three-hinged arch bridge girder of 25 m 

span with a set of defined moving loads. The permanent/static loads considered 

here were the self-weight of the bridge deck girder, the weight of the piers and 

the weight of the arch itself. Moving loads were applied to the scale of IRC 70R 
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(wheeled), but the entire chain was not applied. The bridge consisted of 5 bays of 

5m each. The rise was kept at 9m. The deck would exert its self-weight and the 

loads on the moving loads on the piers and the two abutments. The abutments are 

of little interest here because they would either rest on the adjacent soil or as piers 

over the springing points. But the intermediate piers act as point loads on the arch. 

These loads combined with the self-weight of the arch would ultimately govern 

the funicular profile of the arch. (Figure 3) 

 

 
Figure 3. General arrangement of the bridge 

 

2.1 The deck girder 
For simplicity of the exercise, the entire bridge deck was idealised as an RCC 

single I section with a wide top flange as a single wheel lane (Figure 4)   

Cross section area of the deck = 1.47 m2 

Depth = 2.025 m 

 

 
Figure 4.  Rendered model of the girder 

 

2.2 Moving loads 
Figure 5 shows the definition of the moving loads adopted. There were four point 

loads of 80 KN, 120 KN, 120 KN and 180 KN spaced at 3.96 m, 1.52 m and 2.13 

m. The Reactions RA1 and RA2 on abutments A1 and A2 were of no significance 

for the generation of the arch profile. However, the intermediate pier reactions 

R1, R2, R3 and R4 would directly affect the funicular shape of the arch as point 

loads. 
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Figure 5. Moving loads' definition 

 

2.3 Creation of load sets 
Since there were four intermediate supports, four sets of values were obtained 

from the STAAD Analysis, each corresponding to that particular incremental 

load case which rendered the max value of vertical reaction at each of the four 

supports (Figure 6).  

The four sets of loads (R1-R4) obtained in the previous section were inverted 

and the self-weight of the RCC piers were added. Both of these loads together 

acted as point loads on the arch. With a fixed cross-section of 700 x 300 mm, the 

self-weight becomes a function of the length of the pier.     

Weight per meter length of the pier = 0.7 × 0.3 × 25 KN/m3 

                        = 5.25 KN/m 
 

 
Figure 6.  Load Sets with R1 to R4 Max each (specified on the left side) 
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2.4 Iterative process for pier length adjustment 
Finding the length of piers was an iterative process – the initial arch geometry 

would govern the length (and therefore the self-weight) of the individual pier 

segment from the deck to the arch rib. This self-weight would significantly 

contribute as a point load on the arch governing the funicular shape of the arch in 

turn. 

 

2.5 Self-weight of the arch 
The cross-section of the RCC arch was assumed to be 700 x 1000 mm. The 

perfect preliminary shape for an arch considered here was a parabola with the 

given chosen rise of 9 m. The self-weight of an arch per unit length = 0.7 × 1 × 

25 KN/m3 = 17.5 KN/m (3) 

 

2.6 Use of graphic statics and computational programming in 

Rhinoceros/Grasshopper  
The entire process of obtaining a funicular shape for the set of loads mentioned 

above was converted in the form of a parametric interface in the CAD software 

Rhinoceros 3D with the parametric plugin Grasshopper. The live interface would 

intuitively describe the bending moment behaviour across the arch profile. 

Furthermore, employing Eddy’s Theorem, the exact numerical value of the 

Bending Moment across any section could be obtained. In the further sections, 

the algorithmic flowchart employed in the Grasshopper script shall be presented. 

 

2.7 Input parameters 
The input parameters listed governed the generation of the arch. They were all 

number slider components giving complete numerical control to the user. The 

various parameters are explained as follows: 

1. Force scale: the representative drawing scale for the forces – 1 mm on the 

CAD interface would denote 10 KN of force. The direction of all forces were 

in the gravity direction, with the exception of the ones in the polar diagram 

where the forces are inverted/upward, drafted tail-to-head from bottom to top, 

as appearing left to right in along the span of the arch. (12) 

2. Space scale: the graphic drawing scale – here 1 mm on the CAD interface 

represents 2 m in the actual drawing.  

3. No. of supports: 6 - Piers plus two abutments. Only pier loads are considered 

to be of importance in the form-finding as the abutment loads don’t fall on 

the arch rib but either on an approach pier or on the arch springing points 

4. Span: 25 m 

5. Rise: 9 m 

6. R1-R4: Inverted Reaction Loads as obtained from the STAAD Analysis. 

7. Pier Linear Weight: The Weight of the Pier per unit length as calculated 

above = 0.525 (*10 KN/m) 
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8. Arch Self Weight: The self-weight of the arch with a catenary distribution = 

0.525 (*10 KN/m). Notice the closer/congested spacing of the vertical 

projections near the springing points and almost equal/flat distribution near 

the center.  

 

2.8 Creating an envelope of funicular polygons 
As shown in Figure 4.5, there were four sets of reactions corresponding to the 

maximum at each support, which needed to be inverted and fed along with the 

rest of the parameters of this program. In general, the number of possible sets of 

load values would be equal to the number of supports in any two dimensional 

deck-arch bridge problem. Therefore, four funicular polygons (Fig 4.23) were 

generated corresponding to the load sets illustrated in Figure 30. They were baked 

and assigned different colours in Rhinoceros. 

 

2.9 Analysis of section moments using Eddy’s theorem 
In order to assess moments at various sections of the original parabola from the 

funicular polygon generated, Eddy’s theorem was employed which goes as 

follows:  

                                            BMx= [p×f] × [(y1 y2) ×s],     where 

p = revised polar distance 

f = force scale 

y1 y2= the length of the vertical intercept between the axis of the structure and 

pressure line at section x-x 

s = space scale (12) 
 

 

 
Figure 7.  Finding intercept between parabola and the funicular curve 
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In order to determine the changing intercepts y1 y2 at various sections of the four 

funicular polygons, the code was written by creating a line segment between the 

two springing points and dividing into 12 segments (Figure 7). The data was 

tabulated onto an excel sheet and bending moments at different sections were 

obtained (Figure 8). 

 

2.10   Observations 

 
Figure 8.  Bending moment at different sections along span of the 3-hinged arch 

 

2.10.1 Effect of variable loads 
● The variation of the funicular polygon depended on the ratio between the 

permanent static loads and the moving vehicle loads. 

● Increasing the permanent loads to equal or more than the moving vehicle loads 

reduced the movement in the shape of the funicular polygons. (11) 

 

2.10.2 The stiffening beam 
One of the methods to reduce the deviations of the various funicular polygons 

achieved in the exercise could be through the introduction of a stiffening beam. 

In the bridge shown, the deck acts as a stiffening beam – 230 mm deep in this 

case – is designed to carry the moments due to the variable loads keeping the 

loads coming onto the arch more or less (11). 

 

2.10.3 Using envelope of polygons to arrive at the optimal form 
Once a set of profiles of all the funicular polygons were determined, the variation 

in the thickness of the arch at various sections was arrived at. By Eddy’s Theorem 
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it was understood that greater deviation would amount to greater moment forces 

(Figure 9). 
 

 
Figure 9.  Movement of a funicular polygon under variable loads 

 

 
Figure 10.  Optimal form of a 3-hinged form 

 

Greater thickness was provided at probable sections with greater funicular 

movement so as to resist greater moments. These moments were a result of the 

moving loads, as the permanent loads would primarily decide the overall general 

shape of the arch. Moreover, keeping the arch section thick enough so that a 

funicular polygon would pass through the kern of the section would eliminate the 

possibility of any tension in the structure. (11) (Figure 10) 

 

3 TEST STUDY 2 - FORM FINDING FOR MOVING LOADS ON A 

2-HINGED DECK ARCH  
Since the graphic statics approach of structural analysis is only applicable for 

determinate structures, a mathematical approach was chosen to carry out the 

form-finding for a 2-hinged arch which is an indeterminate structure. The 

funicular curve was generated from a beam model pinned at both supports, with 

the given set of loads – all considered as point loads – acting on a straight line, as 

on a taught horizontal string. The funicular shape was generated by adjusting the 

heights of each node so that the beam moment is nullified with the thrust moment 

and the vertical reaction moment. The following section shows the steps followed 

to arrive at a mathematical formula to obtain the funicular geometry. 
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Figure 11.  Arrangement of loads of a span of 14m 

 

A span of 14 m with arbitrary loads acting in the gravity direction were assumed 

(Figure 11). The lines of forces help in generating the funicular curve, hence the 

abscissae of the lines of forces were noted down.  A matrix was created with mi
 

representing force lines abscissae (in meters) and ni representing the forces (in 

KN) The height of the forces i.e. the ordinate was not taken into consideration. In 

fact, the suitable height is what was to be determined as per statics. The index i 

denotes the node number starting from 0, which is the left most support. (Figure 

12) 
 

 
Figure 12.  Matrix generated 

 

3.1 Determination of unknowns 
The information presented in the matrix generated was necessary and generated 

for determining the vertical support reactions. 

We know that ∑ 𝑓𝑦 = 0, taking vertically up as positive, 

 𝑅𝑃 + 𝑅𝑄 − ∑ 𝑛𝑖
𝑖=5
𝑖=1  = 0 

 

 𝑅𝑃 + 𝑅𝑄 = 45                      (1) 

Also ∑ 𝑀 𝑃 = 0 , taking clockwise moment as positive, 

 𝑅𝑄 =  
(∑ 𝑚𝑖𝑛𝑖

𝑖=5
𝑖=0 )

𝑚5
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 𝑅𝑄 =
305

14
= 21.78 KN                          (2) 

Put eq. (2) in eq. (1), 

 𝑅𝑃 = 23.22 KN 

 

3.2 Rise-thrust relation 
As per statics, the equation to find the horizontal thrust H in a two-hinged arch is 

given by:  

𝐻 =  
∫ 𝑀0𝑦 𝑑𝑠 

∫ 𝑦2𝑑𝑠  
                                            (3) 

Where,  

M0 = beam moment at a section, 

y = ordinate of the arch at that section  

ds = infinitesimal arch element where s is the length of the center-line of the arch 

However, the approach to find the thrust in this case was different. It was 

assumed that the greatest sag under a similar string/rope model would occur under 

the greatest load or at the centre of gravity of loads.  

 

3.2.1  When greatest sag is assumed under the centre of gravity of loads 
For a discretized load model like in Figure 11, the abscissae of the centre of 

gravity on the span would be 

                   𝐶𝐺𝑥 =
{(0×0)+(10×2)+(10×4)+(20×9)+(5×13)+(0×14)}

0+10+10+20+5+0
 

                              = 6.78 𝑚 (From left support) 
 

  Nearest node at i = 3, where mi = 9, ni = 20 (Figure 13) 
 

 
Figure 13.  When the greatest sag is under the CG of loads 



26                                                                                    Form finding of deck-arch bridge 
 

3.2.2   When greatest sag is assumed under the greatest load 
After determining RP and RQ, and fixing a rise for the arch at a particular location, 

the only unknown left to be determined was the horizontal thrust. Through statics, 

equating the moment at the crown of the arch to zero, the horizontal thrust was 

found, as explained in the next section. 
 

 
Figure 14.  Greatest load is at i = 3, where mi = 9, ni = 20 

 

 
Figure 15.  Point O is the crown at the desired Rise (4m) 

 

Equating the moment on the left side of crown node O to zero  

∑ 𝑀𝑜 = 0  
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{10 × 5} + {10 × (5 + 2)} − {𝑅𝑃 × (5 + 2 + 2)} + {𝐻 × 4} =  0 

𝐻 =  
{𝑅𝑃 × (5 + 2 + 2)} − {{10 × 5} + {10 × (5 + 2)}

4
 

=  
{𝑅𝑃 × 9} − {{10 × 5} + {10 × (5 + 2)}

4
 

=
208.98 − 50 − 70

4
 

= 22.245 𝑘𝑁 

The above sequence can be formulated as: 

𝐻 =
{(𝑅𝑃 × 𝑎𝑏𝑠𝑐𝑖𝑠𝑐𝑐𝑎𝑒 𝑜𝑓 𝑐𝑟𝑜𝑤𝑛 𝑛𝑜𝑑𝑒) − (𝐵𝑒𝑎𝑚 𝑚𝑜𝑚𝑒𝑛𝑡 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑐𝑟𝑜𝑤𝑛 𝑛𝑜𝑑𝑒)}

𝑅𝑖𝑠𝑒
 

Using matrix terminology, 

𝐻 =

[(𝑅𝑃 × 𝑚𝑖) − {∑ (𝑚𝑖 − 𝑚𝑗) ×
𝑗=𝑖−1

𝑗=0
𝑛𝑗}]

𝑅𝑖𝑠𝑒
 

Where i is the index of the crown node O 

 

3.3 Funicular heights for all nodes 
Once all the force unknowns – the vertical reactions and the horizontal thrust – 

were determined, further employment of equations of static equilibrium gave the 

funicular heights of each node. In other words, the height of each node was 

adjusted such that the moments at each these nodes would come to be zero. (12). 

(Figure 16). 

 

 

Figure 16.  Adjusting the funicular heights 

 



28                                                                                    Form finding of deck-arch bridge 
 

A point C was adjusted at a height such the beam moments to the left i.e. moments 

due to 20 KN and both the 10 KN loads and those due to vertical reaction Rp and 

the thrust H cancelled each other out, giving the net moment at C as zero. 

∑ 𝑀𝑐𝑙𝑒𝑓𝑡
= 0 

(20 × 4) + (10 × 9) + (10 × 11) − (𝑅𝑃 × 13) + (𝐻 × ℎ𝑖) = 0 

ℎ𝑖 =
(𝑅𝑃 × 13) − {(20 × 4) + (10 × 9) + (10 × 11)}

𝐻
 

                        = 
(23.22×13)−(280)

22.245
= 0.98 

 

The above calculation can be generalised for any force line at index i as: 
 

ℎ𝑖

=
(𝑅𝑃 × 𝑎𝑏𝑠𝑐𝑖𝑠𝑠𝑎𝑒 𝑜𝑓 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟𝑐𝑒 𝑙𝑖𝑛𝑒) − (𝐵𝑒𝑎𝑚 𝑚𝑜𝑚𝑒𝑛𝑡 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟𝑐𝑒 𝑙𝑖𝑛𝑒)

𝐻
 

ℎ𝑖 =

[(𝑅𝑃 × 𝑚𝑖) − {∑ (𝑚𝑖 − 𝑚𝑗) ×
𝑗=𝑖−1

𝑗=0
𝑛𝑗}]

𝐻
 

This equation was used to generate the funicular heights at every force line. For 

the height of point C whose calculation has been demonstrated i.e. at i=4, the 

element h4 can be seen as 0.98. Similarly, other funicular heights were generated 

and tabulated (Figure 17). As a check, at three critical points – the two springing 

points and the crown – the heights confirmed the credibility of this method. At 

the springing points, i.e. at i=0 and at i=5, the funicular heights were 0, 

confirming their level at the datum of the polygon. Also, hi at the crown (i=3) 

was 4 viz. the rise of the arch (Figure 18). 

 

 
Figure 17.  Matrix with a column of funicular heights hi added 
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Figure 18.  Funicular polygon formed (yellow) by joining the points at different funicular heights 

(red) 

 

3.4 Modelling the script in Rhinoceros/Grasshopper 
The mathematical process could be easily translated into an interactive program 

in any software or any spreadsheet like MS Excel. In this exercise, owing to the 

ease in programming of a visual programming editor (VPE) like Grasshopper 

with in-built mathematical functions with real-time parametric control, it was 

considered suitable to model the entire process by scripting it in Grasshopper. In 

the later section of this study, for the generation of arch profiles in the design of 

a full-fledged 265 m arch, the same program is employed to generate a series of 

arches. 

 

3.5 Verifying Results through structural analysis 
In order to confirm the results obtained through this Rhinoceros/Grasshopper 

mathematical model, a structural analysis of the .dxf model exported from 

Rhinoceros was carried out in structural analysis software Bentley STAAD.Pro. 

The results obtained from STAAD analysis matched with those of Rhino to a 

satisfying degree. The minute sections forces arose due to the stiffness of the 

members (Figure 19). 

 

 
Figure 19.  Comparison of results of reactions 

(kN) From Rhino+GH From 

STAAD

RP 23.214 23.214

RQ 21.785 21.786

H 22.232 22.248
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4 FORM FINDING AND ANALYSIS OF 265 METER SPAN 

DECK-ARCH BRIDGE 
Having obtained a process for a two-hinged arch in the previous section with a 

given set of loads, it was deemed possible to utilise the same in a full-fledged 

deck-arch bridge superstructure design problem. The problem of a hypothetical 

bridge with a span of 265 m was chosen. A general arrangement drawing was 

drafted which gave details of the width of lanes, the deck sections, the spans, 

placing of piers, etc. Accordingly, starting from the modelling of the deck to that 

of the piers, the loads were analysed and a set of matrices were created to generate 

the funicular shapes with a pre-decided rise. Thereafter structural analysis was 

done on the different arches with the above-mentioned to deduce, verify and 

compare the force results. Comparison of forces were also drawn with a parabolic 

arch of the same span and rise. Based on the force results, suitable sections of 

arch rib in CFT (Concrete Filled Tubes) were developed and chosen. The load 

matrices were modified, with the added arch self-weights. Funicular shapes were 

again generated and observed. The loads considered for this process are 

supplemented in Annexure-A. 

 

4.1 Formulating the design problem 
A hypothetical bridge design problem was chosen to implement the form-finding 

process discussed so far over a full-fledged deck-arch roadway bridge at Anji 

Khad in Jammu, India where the proposed span of 265 m was chosen (Figure 

20). 

 

4.2 Design basis  

• Height of Bridge (between F.L. and B.L.): 189 m 

• Type of Bridge: CFT Deck Arch Open Spandrel Type 

• Design Arch Span: 265 m (Symmetrical Arch assumed) 

• No. of Lane: 2+2+footpath on both sides 

• Spans (metres): {(1 x 30) + (3 x 25) + (1 x 15) + (1 x 12.5)} x  2 ways 

• Type of Deck: Composite Slab with Steel Girders 

• Type of Arch Rib: CFT with a series of Rectangular Hollow Sections. 

• Rise: 60 m 

• Loading: 2 lanes of Class A or 1 lane of Class 70R loading each way of 

traffic. 

• Codes consulted: IS 800, IRC 6, IRC 112, IRC 22, IRC 24, BS 5400 (parts 3 

and 5) 
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Figure 20.  Bridge elevation (dimensions in meters) 

 
Figure 21.  Cross-section of a one-way 30m span at the support (dimensions in mm) 

 

4.3 Composite deck 
The deck was proposed as a composite girder slab system with plate girders 

running simply supported bearing-to-bearing longitudinally (Figure 21). They 

were interspersed with transverse girders at 0.5 m to 1 m with profiled top flanges 

designed to transfer shear to the longitudinal plate girders. The top flanges of both 

the girders flush to accommodate the profiled decking sheet upon which rests the 

concrete slab with minimum shrinkage reinforcement. The composite action is 

facilitated by the shear connectors. On the top is a 75 mm wearing coat. 
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4.4 Grillage modelling 
The analysis of the deck was performed by grillage analogy method. This method 

involves dividing the deck into a two-dimensional grid with the gridlines running 

in the two orthogonal directions – one along the span, parallel to the longitudinal 

members, and the other perpendicular to span. The girders have an effective 

flange width for the necessary slab actions as per the codes. They are assigned 

their material properties in the analysis software or given the equivalent moment 

of inertia in both the directions along with the torsional moment of inertia (Figure 

22). 

Three grillage models were created for the analysis of the deck – first with 

only self-weight of all the structural members and the super imposed dead load, 

second with incremental loading of two lanes of Class A chain and third with 

incremental loading of one lane of Class 70R chain. A total of 2000 load cases in 

both Class 70R and Class A cases each were generated. 
 

 
Figure 22.  Elements of a sample grillage model of one span explained in plan  

 

4.5 Post analysis 
Once all the three deck grillages were analysed, the reactions obtained from each 

of the bearings were noted down and tabulated. The reactions at the abutment 

bearings (terminal nodes) were ignored. The other bearings were important as 

reactions on those would be transferred to the arch rib. 

 

4.6 Critical load cases  
For the live load grillage models, an envelope of maximum reactions on each of 

the bearings were noted along with their corresponding incremental load case was 
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considered. These load cases were marked as Critical Load Cases. The number 

of such load cases marked the number of matrices that would be obtained for the 

funicular curve generation. 

 

4.7 Converting bearing loads into pier loads or reaction sets  
Since the study deals with in-plane forces and deals with the generated funicular 

arch in two dimensions, the three bearing loads from each of girders were added 

and were condensed into the respective 11 pier loads. In other words, Reactions 

were shrunk into what formed 46 Reaction Sets. By a ‘Reaction Set’, what implies 

is a set of all those forces that might be inverted and said to be acting over the 

Piers. These forces were required to: 

• Design the Piers 

• Act as loads for the funicular arch generation 

  

4.8 Pier self-weight  
Once the bearing reactions were obtained, pier sizes were determined through 

codal design provisions (1), (2) for axial compression plus biaxial bending. The 

bending moments were assumed to be arising due to the eccentricities of an 

envelope of the forces on the bearings. Groups of four angle sections with 

stiffening plates were chosen for the pier. The center line length of these piers 

were measured from the bearings to the top edge of a preliminary catenary arch 

generated. The self-weight of these piers was added to the bearing loads obtained. 

The three central piers were deemed too short (less than a metre in length) for any 

significant load hence they are marked with red crosses at the top. (Figure 23) 

 

 
Figure 23.  Piers considered with their length (in blue) along with their abscissae 

 

4.9 Generating load matrices  

Once the reactions due to dead loads, super imposed dead loads, live loads 

and impact loading were obtained from the grillage analysis, the pier loads 

were added and 46 load matrices were obtained. These load matrices 

helped in the generation of the funicular arches as explained in the previous 
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section. The index i denotes the node number starting from the leftmost 

node of the arch 0. The first column mi denotes the abscissae of the position 

of the loads whereas the column ni denotes the magnitude of loads acting 

in the downward direction. As shown in Table 6.10, there were 46 matrices 

generated (only some of the ni values are shown) pertaining to the total of 

46 reaction sets. 

 

4.10   Generation of funicular shapes in Rhinoceros/Grasshopper 
The program created in Grasshopper to draft funicular shapes in Rhinoceros has 

been explained in the previous chapters. The 46 load matrices mentioned above 

were fed into the same code (Figure 24) where the list mi comprised of the 

abscissae/X-Coordinates of the application of the loads whereas the list ni 

comprised of all the possible sets of loads to applied to generate the funicular 

arches.  
 

 

 
Figure 24.  Funicular shape generated in Rhinoceros 
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As a result, keeping the list mi fixed, a call was made to each and every one of 

the 46 sets created into the list ni. Therefore, a total of 46 funicular arches were 

generated using this script. A visual observation was carried out by super 

imposing a parabolic arch and a catenary arch over the 46 arches.  

 

4.11   Structural analysis  
A structural analysis of some of the chosen curves out of 48 curves 

(46+Catenary+Parabola) was carried out in STAAD.Pro. The 46 load reaction sets 

were chosen as nodal loads to be applied on the 11 intermediate nodes of each 

curve.  

 

 

Figure 25.  Curves: red – parabola; green – catenary; orange – leftmost leaning funicular; blue – 

rightmost leaning funicular; black – normalized curve  

  

4.12   Arriving at a normalized curve 
One of the curves upon which structural analysis was performed was a 

normalized curve generated from the envelope of 46 funicular arches generated. 

In order to arrive at the node of a normalized curve, each of the junctions of the 

envelope were zoomed in for observation, and all the 46 nodal points of that node 

were identified. Then a centroid of the 46 nodal points was located. This 

procedure was repeated for all 11 nodes. All the centroidal points were all joined 

to form a polygon (Figure 26). Also, out of these curves, 5 prominent curves, 

namely (i) Parabola, (ii) Catenary, (iii) Leftmost leaning Catenary, (iv) Rightmost 

leaning Catenary and (v) Normalized Curve, were extracted for further 

investigation (Figure 25) 
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Figure 26.  Detail at a node of the envelope of curves – The green point is the centroid of all the 

red points shown and shall itself act as a node of the normalized curve. 

 

4.13   Arriving at CFT sections  
Data such as in-plane moment Mx, in-plane shear Vy, axial force along the arch 

rib, vertical support reactions and the horizontal thrust was tabulated. Rectangular 

Steel Sections were chosen for the rib. Here the entire arch rib was assumed to 

act as a composite column with an axial compression plus uniaxial bending. BS 

5400 part 3 and 5 were referred for the design guidelines. 

  

4.14   Modification of load matrices  
After the finalization of the CFT Section of the Arch Rib, the Load Matrices were 

modified to add the linear self-weight of the CFT arch. The mi which denotes the 

abscissae for the application of the loads, was varied with an increment of 0.5 

meters. This implied that at every increment from left to right, the value of ni was 

fed as half the linear self-weight of the arch rib i.e. 83.208 KN/m. At positions of 

applications of pier and deck loads, the loads from the previous generated 46 

matrices were added to the linear self-weight.   
 

4.15   Generation of final funicular arches 
Once again, the 46 load matrices were fed into the program script developed in 

Grasshopper and the 46 funicular arches were baked superimposed onto one 

another to obtain a final envelope of arches. 
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5 RESULTS AND CONCLUSIONS 

 
Figure 27.  Forces before application of arch self-weight (from STAAD analysis) 

 

 
Figure 28.  Forces after application of arch self-weight (from STAAD analysis) 
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Figure 29.  Rib deflections in mm (from STAAD analysis) 

 

5.1 Observations and inferences  

• For the final design problem, 5 arches were analysed for 46 load cases before 

the application of the self-weight and 3 arches after the consideration of self-

weight.  

• It was observed that the Parabola and the Normalized curves generated almost 

similar in-plane bending moments which were considerably lower than the 

other three curves. The rest of the forces were comparatively similar in 

magnitude (Figure 27). 

• After the CFT Arch Rib self-weight was considered the Parabola curve 

generated the lowest bending moments. However, in turn it resulted in the 

highest axial forces (Figure 28). 

• The Normalized curve generated higher bending moments but lower axial 

forces (lowest in all) than the parabolic curve. 

• The Catenary curve and the Rightmost leaning and Leftmost leaning curves 

gave unfavourable results in all cases. However, the Catenary curves 

generated slightly lower horizontal thrusts in all cases. 

• The parabolic curve underwent the least displacements (Figure 29).  
 

Based on the above observations the following preferences could be made on 

the selection of arches. 
 

Force to 

minimise 

In-Plane 

moments 

Horizontal 

Thrust 

Axial Forces Displacements 

Type of 

Curve 

Parabola Catenary Normalized Parabola 

 

0

50

100

150

200

250

Section Displacements
Global X

Section Displacements
Global Y

Absolute Joint
Displacement

Parabola Catenary Normalized



Singh                                                                                                                                39 

5.2 Future scope 

• The structural system studied were predominantly two-dimensional. 

However, using advanced form-generating methods like Thrust Network 

Analysis could be employed to generate form-active structures in three 

dimensions. (13) 

• Consideration of lateral forces – Wind and Earthquake forces – on the arches 

could be studied and an analysis and design process could be developed. 

• Feasibility and behaviour of CFT arch ribs under specifically wind loads – 

either by CFD techniques or more comprehensively wind tunnel modelling 

and analysis – over conventional steel or RCC ribs can be studied. 

• Optimization of material by variation of amount of concrete in the CFT 

Sections along the arch profile as per the change in section forces can be 

studied 

• A different flow of generation of funicular arches could be devised based on 

the construction sequence. 
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ANNEXURE A - LOADS CONSIDERED 

• Dead Loads 

Load of Steel Plate Girders 

o For 30 m and 25 m spans,  

Left Girder and Centre and Right Girders = 11.59 KN/m Linear 

Load 

o For 15 m and 12.5 m spans 

Small Left Girder and Small Centre and Right Girders = 6.913 

KN/m Linear Load 

o For Transverse Girders, ISMB 600 = 1.21 KN/m (Self Weight) 

Load of Concrete Slabs 

o 250 mm thickness, density of RCC = 25 KN/m3, Floor Load = 

6.25 KN/m2 

• Superimposed Dead Loads 

o Load of Wearing Coat, 75 mm thick Macadam, density = 22 

KN/m3, Floor Load = 1.65 KN/m2 

o Load of Crash Barrier + Railings 

Area of Crash Barrier = 0.257 m2 

C.B. as Point load = 6.425 KN 

Railing Point load = 0.15 KN 

    

 

Schematic section of deck showing crash barrier loads and railing loads 

 

• Footpath Live Load 

Although it is a termed as a live load, the Footpath Live Load was 

considered as a Superimposed Dead Load and applied as a distributed 

floor load over the area designated for footpaths.  

As per Cl. 206.3 of IRC 6 2014   

“For effective spans of over 7.5 m but not exceeding 30 m, the intensity 

of load shall be determined according to the equation: 

0.15KN 6.425KN 6.425KN

2.175m 3.47m 3.47m 1.725m

0.250m 0.250m
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𝑷 = 𝑃1 −
40𝐿 − 300

9
 

                   Where P1 = 400 kg/m2 

Footpath Live Loads for different spans 

Span = 30 25 15 12.5 m 

P  = 300 322.2222 366.6667 377.7778 kg/m2 

 = 3 3.23 3.67 3.78 KN/m2 
 

• Primary Live Load   

For a carriageway width of 8.2 m distributed over 2 two lanes in one 

way, the codal provisions of IRC 6 2014 allow either 2 lanes of Class A 

Loading or 1 Lane of Class 70R Loading. 

• Impact Factor 

As per Cl. 208.2 of IRC 6 2014 

“In the members of any bridge designed either for Class A this impact 

percentage shall be determined from the following equations which are 

applicable for spans between 3 m and 45 m.” 

Impact factor fraction for steel bridges (span L) = 9/(13.5+L) 

For Class 70R loading (wheeled) for steel bridges, as per Cl. 208.3 of 

IRC 6 2014 25% impact factor was to be taken for spans up to 23 m. 

For spans larger than 23 m, Fig 5 of IRC 6 2014 was referred. 
 

  

  
(Transverse Girders)  

Table 1.  Impact factors for different spans 

Span (m) 30 25 15 12.5 3.45 2.175 1.725 

Class A Steel 1.207 1.234 1.316 1.347 1.531 1.545 1.545 

Class 70R Steel 1.147 1.147 1.22 1.25 1.25 1.25 1.25 

 

• Secondary Live Load  

As per Cl. 211.2 of IRC 6 2014 

“In the case of a single lane or a two lane bridge: twenty percent of the first 

train load plus ten percent of the load of the succeeding trains. Where the 

entire first train is not on the full span, the braking force shall be taken as 

equal to twenty percent of the loads actually on the span or continuous unit 

of spans.” 

Also, as per Cl. 211.3 of IRC 6 2014  

“The force due to braking effect shall be assumed to act along a line parallel 

to the roadway and 1 .2 m above it. While transferring the force to the 

bearings, the change in the vertical reaction at the bearings should be taken 

into account.” 
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Table 2.  Longitudinal Forces transferred to the bearings 

Class A         
Span  = 30 25 15 12.5 m 

Total Load  = 554 554 500 418 kN 

Force Left  = 4.432 5.3184 8 8.0256 kN 

Force Right  = -4.432 -5.3184 -8 -8.0256 kN 

        

 Class 70R       

Span  = 30 25 15 12.5 m 

Total Load  = 1000 1000 1000 830 kN 

Force Left  = 8 9.6 16 15.936 kN 

Force Right  = -8 -9.6 -16 -15.936 kN 
 


