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ABSTRACT: The study deals with obtaining a design process for 2-hinged and
3-hinged deck-arches using principles of 2D graphic statics, parametric and
mathematical modelling. The iterative process starts with the dead load of a
straight horizontal deck and the vehicular live loads; it proceeds to incorporate
the self-weight of the funicular arch and the spandrel piers. At every step the
shape is modified based on funicular form finding which alters the lengths and
weights of the spandrel piers which in turn affect the arch profile. The process
repeats until convergence is achieved. The dynamic (vehicular) loads lead to an
envelope of funicular profiles, which are then compared with a generic parabolic
and a generic catenary profile of the same span and rise. Results like in-plane
moments, horizontal thrust, vertical reactions, axial forces, deflections are
compared.

KEYWORDS: Deck-Arch Bridge; Funicular; Graphic Statics; Parametric.

1 INTRODUCTION

There is immense scope for provision and improvement of road network
connectivity, especially in the hilly regions of India and neighbouring states of
Nepal, Bhutan, etc. (4). Amongst all types of bridge superstructure typologies,
arch bridges have a significant scope in form-finding; funicular form-finding
methods in arches have been explored in detail by stalwarts like Antonio Gaudi
(for static loads) and bridge designers in particular like Robert Maillart (for
moving loads). The idea behind a funicular shape is the transfer of loads through
pure compression as inverted to a tied chain model with similar load arrangement
hanging down due to gravity in pure tension (11)

While substantial research has already been done on funicular form finding in
the past century, through the utilization of parametric tools and computer-
generative form finding, a process for obtaining the ‘perfect arch’ can be
developed in the case of both 2-hinged and 3-hinged Deck Arch Bridges.

In the current design practice, for a given span a rise is chosen by the designer
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based on the aesthetic considerations. Circular arch/segmental arch profiles are
chosen for masonry bridges of short to medium span and for steel bridges in some
cases. The parabolic profile is mathematically proven to be better suited for
uniformly distributed loads producing zero or minimum in-plane bending
moments along the arch rib. Therefore, parabolic arch profiles are increasingly
used for open-spandrel steel and concrete bridges in the past-half century.

1.1 Graphic statics

Graphic Statics is the field of structural mechanics that involves translation of
algebraic problems of statics into graphical representations. The external forces
are represented as force vectors and through basic vector algebra, they are
resolved into resultant directions (12). Although graphical methods eliminate the
use of error-prone arithmetic equations, they are on a decline now because the
traditional methods of graphic statics involved the use of the classical hand
draughting methods. This study reinvigorates the area of graphic statics through
modern CAD modelling tools to solve and analyse arch problems.

In Graphic Statics, external forces are drawn to a predefined scale called the
force scale. The actual line diagram of the structure (beam/truss/arch) is drawn to
a suitable scale called the space scale. This diagram is called the structure
diagram. Alongside, a polar diagram is converted with the same forces drawn in
a line tail to end. With a suitably chosen polar point, radial lines are drawn
originating from it towards the tails of each of the force vectors drawn within this
polar diagram. Now these radial lines are borrowed from here to the structure
diagram resulting in a funicular polygon. Since there is equilibrium of forces
considered in the system, graphic statics is a self-checking process (15).

1.1.1 Eddy’s Theorem

The Eddy’s Theorem is a useful part of Graphic Statics that helps in quick
analysis of the section forces through the use of the generated Funicular Polygon.
It states that “the bending moment at any section of a structural element is
proportional to the vertical intercept the pressure line and the axis of the
structure.” (14)

1.2 Funicular structures

A funicular structure is one which can achieve a stable equilibrium under the
action of loads. The term funicular comes from the Latin word funis meaning
rope. Just as a rope sags and assumes a curvilinear shape under its own weight, a
funicular geometry is achieved under the action of a specific set of loads. To
understand funicular structures a detailed understanding of a catenary is needed.
(12). (Figure 1)
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Figure 1. List of catenary string shapes with
loads (left) with their respective funicular
shapes (right). the funicular shapes are
‘perfect’ for the particular loads on the string.
11)

1.2.1 Difference between parabolic and catenary arches

The Catenary curve is similar to the Parabola. The only difference is observed
near the springing points, where owing to the greater slope of the sagging rope,
the catenary weight distribution is much congested in the horizontal direction. As
we move further towards the center, the cable becomes horizontal and the weight
distribution stabilizes itself and becomes uniform. This results in greater
deflections in the case of the catenary, as can be observed in the outward profile
(blue) as compared with the parabolic profile (Figure 2).

2 TESTSTUDY 1-FORM FINDING FOR MOVING LOADS ON A
3-HINGED DECK ARCH

This section deals with form-finding of a three-hinged arch bridge girder of 25 m

span with a set of defined moving loads. The permanent/static loads considered

here were the self-weight of the bridge deck girder, the weight of the piers and

the weight of the arch itself. Moving loads were applied to the scale of IRC 70R
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(wheeled), but the entire chain was not applied. The bridge consisted of 5 bays of
5m each. The rise was kept at 9m. The deck would exert its self-weight and the
loads on the moving loads on the piers and the two abutments. The abutments are
of little interest here because they would either rest on the adjacent soil or as piers
over the springing points. But the intermediate piers act as point loads on the arch.
These loads combined with the self-weight of the arch would ultimately govern
the funicular profile of the arch. (Figure 3)
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Figure 3. General arrangement of the bridge

2.1 The deck girder

For simplicity of the exercise, the entire bridge deck was idealised as an RCC
single | section with a wide top flange as a single wheel lane (Figure 4)

Cross section area of the deck = 1.47 m?

Depth =2.025 m

Figure 4. Rendered model of the girder

2.2 Moving loads

Figure 5 shows the definition of the moving loads adopted. There were four point
loads of 80 KN, 120 KN, 120 KN and 180 KN spaced at 3.96 m, 1.52 m and 2.13
m. The Reactions RAL and RA2 on abutments Al and A2 were of no significance
for the generation of the arch profile. However, the intermediate pier reactions

R1, R2, R3 and R4 would directly affect the funicular shape of the arch as point
loads.
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Figure 5. Moving loads' definition

2.3 Creation of load sets

Since there were four intermediate supports, four sets of values were obtained
from the STAAD Analysis, each corresponding to that particular incremental
load case which rendered the max value of vertical reaction at each of the four
supports (Figure 6).

The four sets of loads (R1-R4) obtained in the previous section were inverted
and the self-weight of the RCC piers were added. Both of these loads together
acted as point loads on the arch. With a fixed cross-section of 700 x 300 mm, the
self-weight becomes a function of the length of the pier.

Weight per meter length of the pier = 0.7 x 0.3 x 25 KN/m?

=5.25 KN/m
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Figure 6. Load Sets with R1 to R4 Max each (specified on the left side)



20 Form finding of deck-arch bridge

2.4 lterative process for pier length adjustment

Finding the length of piers was an iterative process — the initial arch geometry
would govern the length (and therefore the self-weight) of the individual pier
segment from the deck to the arch rib. This self-weight would significantly
contribute as a point load on the arch governing the funicular shape of the arch in
turn.

2.5 Self-weight of the arch

The cross-section of the RCC arch was assumed to be 700 x 1000 mm. The
perfect preliminary shape for an arch considered here was a parabola with the
given chosen rise of 9 m. The self-weight of an arch per unit length = 0.7 x 1 x
25 KN/m3 = 17.5 KN/m (3)

2.6 Use of graphic statics and computational programming in
Rhinoceros/Grasshopper
The entire process of obtaining a funicular shape for the set of loads mentioned
above was converted in the form of a parametric interface in the CAD software
Rhinoceros 3D with the parametric plugin Grasshopper. The live interface would
intuitively describe the bending moment behaviour across the arch profile.
Furthermore, employing Eddy’s Theorem, the exact numerical value of the
Bending Moment across any section could be obtained. In the further sections,
the algorithmic flowchart employed in the Grasshopper script shall be presented.

2.7 Input parameters

The input parameters listed governed the generation of the arch. They were all

number slider components giving complete numerical control to the user. The

various parameters are explained as follows:

1. Force scale: the representative drawing scale for the forces — 1 mm on the
CAD interface would denote 10 KN of force. The direction of all forces were
in the gravity direction, with the exception of the ones in the polar diagram
where the forces are inverted/upward, drafted tail-to-head from bottom to top,
as appearing left to right in along the span of the arch. (12)

2. Space scale: the graphic drawing scale — here 1 mm on the CAD interface
represents 2 m in the actual drawing.

3. No. of supports: 6 - Piers plus two abutments. Only pier loads are considered

to be of importance in the form-finding as the abutment loads don’t fall on

the arch rib but either on an approach pier or on the arch springing points

Span: 25 m

Rise: 9m

Ri-Ra: Inverted Reaction Loads as obtained from the STAAD Analysis.

Pier Linear Weight: The Weight of the Pier per unit length as calculated

above = 0.525 (*10 KN/m)

No ok
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8. Arch Self Weight: The self-weight of the arch with a catenary distribution =
0.525 (*10 KN/m). Notice the closer/congested spacing of the vertical
projections near the springing points and almost equal/flat distribution near
the center.

2.8 Creating an envelope of funicular polygons

As shown in Figure 4.5, there were four sets of reactions corresponding to the
maximum at each support, which needed to be inverted and fed along with the
rest of the parameters of this program. In general, the number of possible sets of
load values would be equal to the number of supports in any two dimensional
deck-arch bridge problem. Therefore, four funicular polygons (Fig 4.23) were
generated corresponding to the load sets illustrated in Figure 30. They were baked
and assigned different colours in Rhinoceros.

2.9 Analysis of section moments using Eddy’s theorem
In order to assess moments at various sections of the original parabola from the
funicular polygon generated, Eddy’s theorem was employed which goes as
follows:

BMx= [pxf] x [(y1y2) xs], ~ where
p = revised polar distance
f = force scale
y1 Y2= the length of the vertical intercept between the axis of the structure and
pressure line at section x-x
s = space scale (12)

Figure 7. Finding intercept between parabola and the funicular curve
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In order to determine the changing intercepts y: Yy at various sections of the four
funicular polygons, the code was written by creating a line segment between the
two springing points and dividing into 12 segments (Figure 7). The data was
tabulated onto an excel sheet and bending moments at different sections were
obtained (Figure 8).

2.10 Observations
600

Bending Moment, kNm
—_ [\S] w s (5]
() o o o o
(e} o o o o

[}
o
31

10 15 20 25 30
Arch Span Abscissa, m

—8—R1Max —@—R2Max R3Max —@—R4Max

Figure 8. Bending moment at different sections along span of the 3-hinged arch

2.10.1 Effect of variable loads

e The variation of the funicular polygon depended on the ratio between the
permanent static loads and the moving vehicle loads.

e Increasing the permanent loads to equal or more than the moving vehicle loads
reduced the movement in the shape of the funicular polygons. (11)

2.10.2 The stiffening beam

One of the methods to reduce the deviations of the various funicular polygons
achieved in the exercise could be through the introduction of a stiffening beam.
In the bridge shown, the deck acts as a stiffening beam — 230 mm deep in this
case — is designed to carry the moments due to the variable loads keeping the
loads coming onto the arch more or less (11).

2.10.3 Using envelope of polygons to arrive at the optimal form
Once a set of profiles of all the funicular polygons were determined, the variation
in the thickness of the arch at various sections was arrived at. By Eddy’s Theorem
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it was understood that greater deviation would amount to greater moment forces
(Figure 9).

“ Funicular Polygon

Original Arch Profile

A

« > Profile of Deflected Arch

Figure 9. Movement of a funicular polygon under variable loads

Figure 10. Optimal form of a 3-hinged form

Greater thickness was provided at probable sections with greater funicular
movement so as to resist greater moments. These moments were a result of the
moving loads, as the permanent loads would primarily decide the overall general
shape of the arch. Moreover, keeping the arch section thick enough so that a
funicular polygon would pass through the kern of the section would eliminate the
possibility of any tension in the structure. (11) (Figure 10)

3 TESTSTUDY 2-FORM FINDING FOR MOVING LOADSONA
2-HINGED DECK ARCH

Since the graphic statics approach of structural analysis is only applicable for
determinate structures, a mathematical approach was chosen to carry out the
form-finding for a 2-hinged arch which is an indeterminate structure. The
funicular curve was generated from a beam model pinned at both supports, with
the given set of loads — all considered as point loads — acting on a straight line, as
on a taught horizontal string. The funicular shape was generated by adjusting the
heights of each node so that the beam moment is nullified with the thrust moment
and the vertical reaction moment. The following section shows the steps followed
to arrive at a mathematical formula to obtain the funicular geometry.
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Figure 11. Arrangement of loads of a span of 14m

A span of 14 m with arbitrary loads acting in the gravity direction were assumed
(Figure 11). The lines of forces help in generating the funicular curve, hence the
abscissae of the lines of forces were noted down. A matrix was created with m;
representing force lines abscissae (in meters) and n; representing the forces (in
KN) The height of the forces i.e. the ordinate was not taken into consideration. In
fact, the suitable height is what was to be determined as per statics. The index i
denotes the node number starting from 0, which is the left most support. (Figure
12)

/ m; n;
0 0 0
1 2 10
2 3 10
3 9 20
4 13 5
5 14 0

Figure 12. Matrix generated

3.1 Determination of unknowns
The information presented in the matrix generated was necessary and generated
for determining the vertical support reactions.

We know that Z fy = 0, taking vertically up as positive,
= Rp+Ry—XiZin;=0
Also ), M p = 0, taking clockwise moment as positive,

(Z%ié mini)

ms

E>RQ=
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305

= Ro =74

= 21.78 KN (2)
Put eqg. (2) ineq. (1),
= Rp =23.22KN

3.2 Rise-thrust relation
As per statics, the equation to find the horizontal thrust H in a two-hinged arch is
given by:

_ IMpyas
~ [y2as )
Where,

Mo = beam moment at a section,

y = ordinate of the arch at that section

ds = infinitesimal arch element where s is the length of the center-line of the arch
However, the approach to find the thrust in this case was different. It was

assumed that the greatest sag under a similar string/rope model would occur under

the greatest load or at the centre of gravity of loads.

3.2.1 When greatest sag is assumed under the centre of gravity of loads
For a discretized load model like in Figure 11, the abscissae of the centre of
gravity on the span would be

_ {(0x0)+(10x2)+(10x4)+(20%x9)+(5x13)+(0x14)}
- 0+10+10+20+5+0
= 6.78 m (From left support)

CG,

= Nearest node at i = 3, where m; =9, n; = 20 (Figure 13)

20 kN
10 kN 10 kN

Greatest Sag

6.78 m

Figure 13. When the greatest sag is under the CG of loads
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3.2.2 When greatest sag is assumed under the greatest load

After determining Rp and Rq, and fixing a rise for the arch at a particular location,
the only unknown left to be determined was the horizontal thrust. Through statics,
equating the moment at the crown of the arch to zero, the horizontal thrust was
found, as explained in the next section.

20 kN
10 kN 10 kN
5 kN
& i ®
P Qa
2m Im 5m & Am 1m
g
Ll
gm
Figure 14. Greatest load is at i = 3, where mi =9, ni = 20
0
20 kN
10 kN 10 kN 7
2
£
N 5 kN
H P. @ a
2m 2m 5m %ﬂ am 1m
g
RP @ RQ

Figure 15. Point O is the crown at the desired Rise (4m)

Equating the moment on the left side of crown node O to zero

ZMO=0
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(10X 5} +{10X (5+2)} —{Rp X G+2+ 2D} +{H x4} = 0

_ {Rp X (5+2+2)}— {10 x 5} + {10 x (5 + 2)}

H
4
{Rp x 9} — {{10 x 5} + {10 x (5 + 2)}
- 4
~208.98—50 — 70
B 4
= 22.245 kN

The above sequence can be formulated as:

. {(Rp x abscisccae of crown node) — (Beam moment towards left of crown node)}
B Rise

Using matrix terminology,

j=i—1
(Rp X mi) - {Zj‘=0 (ml- - mj) X nj}]

Rise
Where i is the index of the crown node O

H =

3.3 Funicular heights for all nodes

Once all the force unknowns — the vertical reactions and the horizontal thrust —
were determined, further employment of equations of static equilibrium gave the
funicular heights of each node. In other words, the height of each node was

adjusted such that the moments at each these nodes would come to be zero. (12).
(Figure 16).

®5

10 kN 10 kN

Funicular height h;

Figure 16. Adjusting the funicular heights
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A point C was adjusted at a height such the beam moments to the left i.e. moments
due to 20 KN and both the 10 KN loads and those due to vertical reaction R, and
the thrust H cancelled each other out, giving the net moment at C as zero.

Z MCleft =0

(20x4)+ (10x9) + (10x11) — (Rp x13)+ (H x h;) =0
(Rp x13) —{(20 x4) + (10 x9) + (10 x 11)}
hi = H
_(23.22x13)—(280) _
- 22.245 =0.98

The above calculation can be generalised for any force line at index i as:

h;
(Rp X abscissae of index force line) — (Beam moment left of index force line)
B H
j=i-1
[(RP X mi) - {Z ' (mi - m]) X le}
hi = =9
H

This equation was used to generate the funicular heights at every force line. For
the height of point C whose calculation has been demonstrated i.e. at i=4, the
element hs can be seen as 0.98. Similarly, other funicular heights were generated
and tabulated (Figure 17). As a check, at three critical points — the two springing
points and the crown — the heights confirmed the credibility of this method. At
the springing points, i.e. at i=0 and at i=5, the funicular heights were O,
confirming their level at the datum of the polygon. Also, h; at the crown (i=3)
was 4 viz. the rise of the arch (Figure 18).

i m; n; h;
0 0 0 0

1 2 10 2.088
2 4 10 3.27
3 9 20 4
4 13 5 0.98
5 14 0 0

Figure 17. Matrix with a column of funicular heights hi added
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Figure 18. Funicular polygon formed (yellow) by joining the points at different funicular heights
(red)

3.4 Modelling the script in Rhinoceros/Grasshopper

The mathematical process could be easily translated into an interactive program
in any software or any spreadsheet like MS Excel. In this exercise, owing to the
ease in programming of a visual programming editor (\VPE) like Grasshopper
with in-built mathematical functions with real-time parametric control, it was
considered suitable to model the entire process by scripting it in Grasshopper. In
the later section of this study, for the generation of arch profiles in the design of
a full-fledged 265 m arch, the same program is employed to generate a series of
arches.

3.5 Verifying Results through structural analysis

In order to confirm the results obtained through this Rhinoceros/Grasshopper
mathematical model, a structural analysis of the .dxf model exported from
Rhinoceros was carried out in structural analysis software Bentley STAAD.Pro.
The results obtained from STAAD analysis matched with those of Rhino to a
satisfying degree. The minute sections forces arose due to the stiffness of the
members (Figure 19).

From Rhino+GH From
STAAD

Rp 23.214 23.214
Rq 21.785 21.786
H 22.232 22.248

Figure 19. Comparison of results of reactions
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4 FORM FINDING AND ANALYSIS OF 265 METER SPAN
DECK-ARCH BRIDGE

Having obtained a process for a two-hinged arch in the previous section with a
given set of loads, it was deemed possible to utilise the same in a full-fledged
deck-arch bridge superstructure design problem. The problem of a hypothetical
bridge with a span of 265 m was chosen. A general arrangement drawing was
drafted which gave details of the width of lanes, the deck sections, the spans,
placing of piers, etc. Accordingly, starting from the modelling of the deck to that
of the piers, the loads were analysed and a set of matrices were created to generate
the funicular shapes with a pre-decided rise. Thereafter structural analysis was
done on the different arches with the above-mentioned to deduce, verify and
compare the force results. Comparison of forces were also drawn with a parabolic
arch of the same span and rise. Based on the force results, suitable sections of
arch rib in CFT (Concrete Filled Tubes) were developed and chosen. The load
matrices were modified, with the added arch self-weights. Funicular shapes were
again generated and observed. The loads considered for this process are
supplemented in Annexure-A.

4.1 Formulating the design problem

A hypothetical bridge design problem was chosen to implement the form-finding
process discussed so far over a full-fledged deck-arch roadway bridge at Anji
Khad in Jammu, India where the proposed span of 265 m was chosen (Figure
20).

4.2 Design basis

Height of Bridge (between F.L. and B.L.): 189 m

Type of Bridge: CFT Deck Arch Open Spandrel Type

Design Arch Span: 265 m (Symmetrical Arch assumed)

No. of Lane: 2+2+footpath on both sides

Spans (metres): {(1 x 30) + (3 x 25) + (1 x 15) + (1 x 12.5)} x 2 ways

Type of Deck: Composite Slab with Steel Girders

Type of Arch Rib: CFT with a series of Rectangular Hollow Sections.

Rise: 60 m

Loading: 2 lanes of Class A or 1 lane of Class 70R loading each way of

traffic.

e Codes consulted: IS 800, IRC 6, IRC 112, IRC 22, IRC 24, BS 5400 (parts 3
and 5)
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Figure 20. Bridge elevation (dimensions in meters)
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Figure 21. Cross-section of a one-way 30m span at the support (dimensions in mm)

4.3 Composite deck

The deck was proposed as a composite girder slab system with plate girders
running simply supported bearing-to-bearing longitudinally (Figure 21). They
were interspersed with transverse girders at 0.5 m to 1 m with profiled top flanges
designed to transfer shear to the longitudinal plate girders. The top flanges of both
the girders flush to accommodate the profiled decking sheet upon which rests the
concrete slab with minimum shrinkage reinforcement. The composite action is
facilitated by the shear connectors. On the top is a 75 mm wearing coat.
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4.4 Grillage modelling

The analysis of the deck was performed by grillage analogy method. This method
involves dividing the deck into a two-dimensional grid with the gridlines running
in the two orthogonal directions — one along the span, parallel to the longitudinal
members, and the other perpendicular to span. The girders have an effective
flange width for the necessary slab actions as per the codes. They are assigned
their material properties in the analysis software or given the equivalent moment
of inertia in both the directions along with the torsional moment of inertia (Figure
22).

Three grillage models were created for the analysis of the deck — first with
only self-weight of all the structural members and the super imposed dead load,
second with incremental loading of two lanes of Class A chain and third with
incremental loading of one lane of Class 70R chain. A total of 2000 load cases in
both Class 70R and Class A cases each were generated.

Dummy Members created to apply
{ footpath live load (shaded blue)

) S T T T T 609‘\00000600“c00°°°°&\
6 6 b6 6 6 & 6 6 & 6 o|le o Sl 6 o & 6 o6 o ol o & 6 o & o o
ooooooooooo SRS 4 6 6 ¢ ¢ oA e ¢ o o 9 o
— \
39099009009990,999990,0,09009900
A
-« \

Transverse —! 1 Moment
Dummy Cirders Lgngltudlnal Releages
Moment Releases Girders denoting
Edge i : 2
Members denoting Shear Discontinuity

Connections

Figure 22. Elements of a sample grillage model of one span explained in plan

4.5 Post analysis

Once all the three deck grillages were analysed, the reactions obtained from each
of the bearings were noted down and tabulated. The reactions at the abutment
bearings (terminal nodes) were ignored. The other bearings were important as
reactions on those would be transferred to the arch rib.

4.6 Critical load cases
For the live load grillage models, an envelope of maximum reactions on each of
the bearings were noted along with their corresponding incremental load case was
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considered. These load cases were marked as Critical Load Cases. The number
of such load cases marked the number of matrices that would be obtained for the
funicular curve generation.

4.7 Converting bearing loads into pier loads or reaction sets
Since the study deals with in-plane forces and deals with the generated funicular
arch in two dimensions, the three bearing loads from each of girders were added
and were condensed into the respective 11 pier loads. In other words, Reactions
were shrunk into what formed 46 Reaction Sets. By a ‘Reaction Set’, what implies
is a set of all those forces that might be inverted and said to be acting over the
Piers. These forces were required to:

e Design the Piers

e Act as loads for the funicular arch generation

4.8 Pier self-weight

Once the bearing reactions were obtained, pier sizes were determined through
codal design provisions (1), (2) for axial compression plus biaxial bending. The
bending moments were assumed to be arising due to the eccentricities of an
envelope of the forces on the bearings. Groups of four angle sections with
stiffening plates were chosen for the pier. The center line length of these piers
were measured from the bearings to the top edge of a preliminary catenary arch
generated. The self-weight of these piers was added to the bearing loads obtained.
The three central piers were deemed too short (less than a metre in length) for any
significant load hence they are marked with red crosses at the top. (Figure 23)

18.8
1.7

34.1

L=
L
/ N

0 3 55 80 105 120 132.5 145 160 185 210 235 265

Figure 23. Piers considered with their length (in blue) along with their abscissae

4.9 Generating load matrices

Once the reactions due to dead loads, super imposed dead loads, live loads
and impact loading were obtained from the grillage analysis, the pier loads
were added and 46 load matrices were obtained. These load matrices
helped in the generation of the funicular arches as explained in the previous
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section. The index i denotes the node number starting from the leftmost
node of the arch 0. The first column m; denotes the abscissae of the position
of the loads whereas the column n; denotes the magnitude of loads acting
in the downward direction. As shown in Table 6.10, there were 46 matrices
generated (only some of the n; values are shown) pertaining to the total of
46 reaction sets.

4.10 Generation of funicular shapes in Rhinoceros/Grasshopper

The program created in Grasshopper to draft funicular shapes in Rhinoceros has
been explained in the previous chapters. The 46 load matrices mentioned above
were fed into the same code (Figure 24) where the list m; comprised of the
abscissae/X-Coordinates of the application of the loads whereas the list n;
comprised of all the possible sets of loads to applied to generate the funicular
arches.
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Figure 24. Funicular shape generated in Rhinoceros
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As a result, keeping the list m; fixed, a call was made to each and every one of
the 46 sets created into the list ni. Therefore, a total of 46 funicular arches were
generated using this script. A visual observation was carried out by super
imposing a parabolic arch and a catenary arch over the 46 arches.

4.11 Structural analysis

A structural analysis of some of the chosen curves out of 48 curves
(46+Catenary+Parabola) was carried out in STAAD.Pro. The 46 load reaction sets
were chosen as nodal loads to be applied on the 11 intermediate nodes of each
curve.

Figure 25. Curves: red — parabola; green — catenary; orange — leftmost leaning funicular; blue —
rightmost leaning funicular; black — normalized curve

4.12 Arriving at a normalized curve

One of the curves upon which structural analysis was performed was a
normalized curve generated from the envelope of 46 funicular arches generated.
In order to arrive at the node of a normalized curve, each of the junctions of the
envelope were zoomed in for observation, and all the 46 nodal points of that node
were identified. Then a centroid of the 46 nodal points was located. This
procedure was repeated for all 11 nodes. All the centroidal points were all joined
to form a polygon (Figure 26). Also, out of these curves, 5 prominent curves,
namely (i) Parabola, (ii) Catenary, (iii) Leftmost leaning Catenary, (iv) Rightmost
leaning Catenary and (v) Normalized Curve, were extracted for further
investigation (Figure 25)
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Figure 26. Detail at a node of the envelope of curves — The green point is the centroid of all the
red points shown and shall itself act as a node of the normalized curve.

4.13 Arriving at CFT sections

Data such as in-plane moment M, in-plane shear Vy, axial force along the arch
rib, vertical support reactions and the horizontal thrust was tabulated. Rectangular
Steel Sections were chosen for the rib. Here the entire arch rib was assumed to
act as a composite column with an axial compression plus uniaxial bending. BS
5400 part 3 and 5 were referred for the design guidelines.

4.14 Modification of load matrices

After the finalization of the CFT Section of the Arch Rib, the Load Matrices were
modified to add the linear self-weight of the CFT arch. The m; which denotes the
abscissae for the application of the loads, was varied with an increment of 0.5
meters. This implied that at every increment from left to right, the value of n; was
fed as half the linear self-weight of the arch rib i.e. 83.208 KN/m. At positions of
applications of pier and deck loads, the loads from the previous generated 46
matrices were added to the linear self-weight.

4.15 Generation of final funicular arches

Once again, the 46 load matrices were fed into the program script developed in
Grasshopper and the 46 funicular arches were baked superimposed onto one
another to obtain a final envelope of arches.
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5 RESULTS AND CONCLUSIONS
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Figure 27. Forces before application of arch self-weight (from STAAD analysis)
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Figure 28. Forces after application of arch self-weight (from STAAD analysis)
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Figure 29. Rib deflections in mm (from STAAD analysis)

5.1 Observations and inferences

For the final design problem, 5 arches were analysed for 46 load cases before
the application of the self-weight and 3 arches after the consideration of self-
weight.

It was observed that the Parabola and the Normalized curves generated almost
similar in-plane bending moments which were considerably lower than the
other three curves. The rest of the forces were comparatively similar in
magnitude (Figure 27).

After the CFT Arch Rib self-weight was considered the Parabola curve
generated the lowest bending moments. However, in turn it resulted in the
highest axial forces (Figure 28).

The Normalized curve generated higher bending moments but lower axial
forces (lowest in all) than the parabolic curve.

The Catenary curve and the Rightmost leaning and Leftmost leaning curves
gave unfavourable results in all cases. However, the Catenary curves
generated slightly lower horizontal thrusts in all cases.

The parabolic curve underwent the least displacements (Figure 29).

Based on the above observations the following preferences could be made on
the selection of arches.

Force to In-Plane Horizontal Axial Forces Displacements
minimise moments Thrust
Type of Parabola Catenary Normalized Parabola

Curve
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5.2 Future scope

PR O
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16.

17.

The structural system studied were predominantly two-dimensional.
However, using advanced form-generating methods like Thrust Network
Analysis could be employed to generate form-active structures in three
dimensions. (13)

Consideration of lateral forces — Wind and Earthquake forces — on the arches
could be studied and an analysis and design process could be developed.
Feasibility and behaviour of CFT arch ribs under specifically wind loads —
either by CFD techniques or more comprehensively wind tunnel modelling
and analysis — over conventional steel or RCC ribs can be studied.
Optimization of material by variation of amount of concrete in the CFT
Sections along the arch profile as per the change in section forces can be
studied

A different flow of generation of funicular arches could be devised based on
the construction sequence.
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ANNEXURE A - LOADS CONSIDERED
e Dead Loads
Load of Steel Plate Girders
o For 30 mand 25 m spans,
Left Girder and Centre and Right Girders = 11.59 KN/m Linear
Load
o For15mand 12.5 m spans
Small Left Girder and Small Centre and Right Girders = 6.913
KN/m Linear Load
o For Transverse Girders, ISMB 600 = 1.21 KN/m (Self Weight)
Load of Concrete Slabs
o 250 mm thickness, density of RCC = 25 KN/m?, Floor Load =
6.25 KN/m?
e Superimposed Dead Loads
o Load of Wearing Coat, 75 mm thick Macadam, density = 22
KN/m®, Floor Load = 1.65 KN/m?
o Load of Crash Barrier + Railings

Area of Crash Barrier = 0257 m’
C.B. as Point load = 6.425 KN
Railing Point load = 0.15 KN
015KN  6.425KN  6425KN
A A A
2.175m 3.47m 3.47m 1725m |
0.250m  0250m

Schematic section of deck showing crash barrier loads and railing loads

e Footpath Live Load
Although it is a termed as a live load, the Footpath Live Load was
considered as a Superimposed Dead Load and applied as a distributed
floor load over the area designated for footpaths.
As per CI. 206.3 of IRC 6 2014
“For effective spans of over 7.5 m but not exceeding 30 m, the intensity
of load shall be determined according to the equation:
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40L — 300
9

P=P!
Where P*= 400 kg/m?

Footpath Live Loads for different spans

Span = 30 25 15 125 m
P = 300 3222222 366.6667  377.7778 kg/m?
= 3 3.23 3.67 3.78 KN/m?

e Primary Live Load
For a carriageway width of 8.2 m distributed over 2 two lanes in one
way, the codal provisions of IRC 6 2014 allow either 2 lanes of Class A
Loading or 1 Lane of Class 70R Loading.

e Impact Factor
As per Cl. 208.2 of IRC 6 2014
“In the members of any bridge designed either for Class A this impact
percentage shall be determined from the following equations which are
applicable for spans between 3 m and 45 m.”
Impact factor fraction for steel bridges (span L) = 9/(13.5+L)
For Class 70R loading (wheeled) for steel bridges, as per CI. 208.3 of
IRC 6 2014 25% impact factor was to be taken for spans up to 23 m.
For spans larger than 23 m, Fig 5 of IRC 6 2014 was referred.

(Transverse Girders)
Table 1. Impact factors for different spans

Span (m) 30 25 15 125 | 345 [ 2175 [ 1.725
Class A Steel 1.207 | 1.234 [1.316| 1.347 | 1531 | 1.545 | 1.545
Class 70R Steel 1147 | 1147 | 122 | 125 | 125 | 1.25 | 1.25

e Secondary Live Load
As per Cl. 211.2 of IRC 6 2014
“In the case of a single lane or a two lane bridge: twenty percent of the first
train load plus ten percent of the load of the succeeding trains. Where the
entire first train is not on the full span, the braking force shall be taken as
equal to twenty percent of the loads actually on the span or continuous unit
of spans.”
Also, as per Cl. 211.3 of IRC 6 2014
“The force due to braking effect shall be assumed to act along a line parallel
to the roadway and 1 .2 m above it. While transferring the force to the
bearings, the change in the vertical reaction at the bearings should be taken
into account.”
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Table 2. Longitudinal Forces transferred to the bearings

Class A

Span = 30 25 15 125 m
Total Load = 554 554 500 418 kN
Force Left = 4.432 5.3184 8 8.0256 | kN
Force right = | -4432 -5.3184 -8 -8.0256 | kN

| Class 70R

Span = 30 25 15 125 m
Total Load = 1000 1000 1000 830 kN
Force ceft = 8 9.6 16 15.936 | kN
Force right = -8 -9.6 -16 -15.936 | kN




