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ABSTRACT: In this paper, the strategies for seismic retrofit of the bridge 

located on Dogaz's highway interchange with the Tehran-Karaj freeway have 

been discussed. The conventional neoprene has been used between decks with 

abutments and cap beams of this bridge. Since the neoprene bearings do not have 

the high capacity of energy dissipation due to the earthquake, therefore, to this 

end, appropriate strategies for seismic retrofitting the bridge should be adopted. 

The method of the study is, first, the alternative effects of elastomeric bearings 

(the second model), lead rubber bearing (the third model) and friction pendulum 

bearing (the forth model) instead of neoprene have been evaluated and compared 

in three separate models and then when the deck with rigid connection is on the 

cap beams and abutments (the first model) have been evaluated in another model.  

The results of the Eigen vector analysis indicates that model the use of 

elastomeric bearings (EB), lead rubber bearing (LRB) and friction pendulum 

bearing (FPB) makes the most of the energy caused by vibration dissipate in 

modes where the structures have simple deformation compared with first model 

and also using the discussed seismic bearing makes to prevent the complicated 

warping of the bridges slightly than the first model. The results of non-linear time 

history analysis indicates that the displacement of deck, cap beams and abutment 

is equal in the first model and its value is very low and this seismic behavior 

makes considerable increase of shear base force in integrated bridge in 

comparison with isolated ones. While enjoying discussed seismic bearings make 

deck slide on seismic bearings under the effect of earthquake that this seismic 

behavior leads to increase the absorption and dissipation of energy in the isolated 

structure than integrated structure.  

 

KEYWORDS: Seismic retrofit, Existing bridge, Lead Rubber Bearing, 
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1  INTRODUCTION 
The review of the earthquakes in recent decades has indicated that a large number 

of bridges are damaged significantly by earthquakes. Regarding the strategic role 

of the bridges in the transportation system, bridges closure can lead to different 

damages. Therefore, the study of the seismic response of bridges from different 

aspects is of particular importance (Mansouri, 2020). One of the most important 

solutions to prevent of the seismic damages of bridges is their seismic retrofit 

using seismic bearings.  

Recently, many different studies have been conducted on the effects of the 

using energy dissipation equipment in seismic retrofitting structures, including 

Parvari et al. (2018); Li and Shi (2019); Zheng (2020); Ju et al. (2020). In 

addition, Qiang et al. (2009) showed that many highway bridges were severely 

damaged or completely collapsed during the 2008 Wenchuan earthquake. A field 

investigation was carried out in the strongly affected areas and over 320 bridges 

were examined. The most common damage included shear-flexural failure of the 

pier columns, expansion joint failure, shear key failure, and girder sliding in the 

transversal or longitudinal directions due to weak connections between girder and 

bearings. Lessons learned from the earthquake were described and 

recommendations related to the design of curved and skewed bridges, design of 

bearings and devices to prevent girder collapse, and ductility of bridge piers were 

presented. Kaheh (2011) showed that conventional neoprene did not have a high 

ability to dissipate energy caused by earthquakes in the bridges. Caterino et al. 

(2014) investigated the damage analysis and seismic retrofit of a continuous pre-

stressed RC bridge. The results of their analysis indicated that the structural 

performance could be enhanced by only modifying the support devices. The 

primary structural components were not required to be involved in the retrofitting 

process. Using the modern seismic code, the upgrading of the viaduct 

performance was obtained by replacing the old bearing devices on the piers and 

existing viscous dampers connected abutments to the deck with new modernised 

ones. Mansouri et al. (2013-2017) investigated that the effect of using the energy 

dissipation equipment on bridges and buildings. They showed that using the 

seismic bearings and dampers could reduce the seismic response of structures. 

Avossa et al. (2018) examined that the seismic retrofit of a pre-stressed concrete 

girder bridge with friction pendulum devices. Furthermore, to assess the impact 

of the FPD nonlinear behavior on the bridge seismic response, a device model 

that reproduces the variation of the normal force and friction coefficient, the 

bidirectional coupling, and the large deformation effects during nonlinear 

dynamic analyses was used. Finally, the paper examines the effects of the FPD 

modelling parameters on the behavior of the retrofitted bridge and assesses its 

seismic response with the results pointing out the efficiency of the adopted 

seismic retrofit solution. Ma et al. (2020) examined that the dynamic response 

analysis of story-adding structure with isolation technique subjected to near-fault 
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pulse-like ground motions. In their paper, a story-adding seismic structure, a 

base-isolated structure, and a story-adding isolated structure were simulated by 

using numerical simulation methods. The dynamic response characteristics of the 

three structures under near-fault pulse-like ground motions were analysed and 

compared with the far-fault ground motions. The results showed that using the 

base isolation could significantly extend the period of the main structure and 

reduce the seismic response on the upper structure. The inter-story drift ratio, 

inter-story shear force, and the story acceleration of all three structures under 

near-field pulse-like ground motions were all larger than that of far-field 

earthquakes. Both base-isolated structure and story-adding isolated structure 

showed excellent damping performance. Besides, the damping properties of the 

base-isolated structure were better than the story-adding isolated structure. Li et 

al. (2020) investigated that the energy response analysis of continuous beam 

bridges with friction pendulum bearing by multi-hazard source excitations. The 

influence of the friction coefficient and isolation period of the FPB on the energy 

response of isolated bridge was then investigated under multi-hazard source 

excitations with different dominant periods and durations. The variations of 

structural response energy, sliding displacement, energy dissipation ratio, and 

acceleration of the isolated bridges were plotted. The results of analytical 

modelling and finite element simulation showed good agreement. In addition, 

there exist particular values of the friction coefficient and isolation period of FPB, 

for which the structural response energy of the isolated bridges attained the 

minimum value. The optimal parameters of FPB were greatly influenced by 

seismic waves, and the friction coefficient of FPB should be increased with the 

increase of seismic fortification intensity. In addition, the energy dissipation 

capacity of FPB used in isolated bridge was excellent. Ma and et al. (2021) 

examined the dynamic response of story-adding structure with isolation 

technique subjected to near-fault ground motions. The results showed that using 

the base isolation could significantly extend the period of the main structure and 

reduce the seismic response on the upper structure. The inter-story drift ratio, 

inter-story shear force, and the story acceleration of all three structures under 

near-field pulse-like ground motions were all larger than that of far-field 

earthquakes. Besides, both base-isolated structures and story-isolated structures 

showed good damping effect. The base-isolated structures showed better seismic 

performance than the adding-story-isolated structures. Besides, many valuable 

studies on the effect of different characteristics of earthquakes on bridges in far-

fault earthquakes have been conducted, including Mansouri (2020, 2021).  

Although many studies have been conducted by researchers in recent years 

concerning the effects of using the energy dissipation equipment on the seismic 

response of the bridges, some of which were mentioned, a comprehensive study 

has not been done thus far to investigate the using different seismic bearings on 

an existing highway RC bridges subjected to far-fault earthquakes. Therefore, the 

effects of the using different seismic bearings on the seismic response of the RC 

https://www.sciencedirect.com/science/article/pii/S1474706520304022#!
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bridges subjected to far-fault earthquakes are investigated in this study, so that 

first, the considered bridge was modeled. Then, the Eigen vector analysis and the 

nonlinear time history analysis were used to evaluate the response of a RC bridge 

at different states with and without applying the effect of the using different 

seismic bearings. 

 

2  THE STUDIED BRIDGE  
A sixth-span existing RC bridge was investigated in this study. The length of 

lateral and middle spans was 12.6m and 18.5m, respectively. The width of the 

deck was 17m. The studied bridge was located at the non-level intersection of 

Dogaz highway with Tehran-Karaj freeway, which is shown in Fig. 1. 

 
Figure 1a.  The location of the bridge under study

 

Each of the five cap beams has four columns. The cross-section of columns was 

a circle with a diameter of 120cm and the cross-section of abutments were 

rectangular with a height of 130cm and a width of 190cm. Other specifications 

of the studied bridge are according to Figs. 1-b to 1-e. 

 
Figure 1b.  Plan view 
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Figure 1c.  Cross-section of deck 

 

 
 

                        Figure 1d. Cross-section of bent          Figure 1e. Cross-section of beam 
Figure 1. The studied bridge 

 
The conventional neoprene is used between the deck with abutments and cap 

beams. The thickness of the deck slab is equal to 27.5cm. 

 

3   ENERGY DISSIPATION EQUIPMENT  
3.1 Elastomeric bearing (EB) 
Elastomeric bearing is mostly made out of laminated rubber with more than one 

reinforcing steel sheets inside. Rubber is used as the major material for flexible 

bending rigidity and the steel sheets are inserted to reinforce the horizontal 

stiffness. A view and features of the elastomeric bearings are as shown in Figs. 2 

to 4.
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 Figure 2.  A view of elastomeric bearing (Akogul and Celik, 2008) 

 

 
Figure 3.  The link element (Akogul and Celik, 2008) 

 

 
Figure 4.  A view of detail of elastomeric bearing (Jabbareh et al. 2014) 

 

Using the following information, EB can be modeled (Akogul and Celik, 2008): 
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3.2   Lead rubber bearing (LRB) 
Lead rubber bearing (LRB) is designed to improve the weakness of rubber 

bearing (RB or EB). RB has low damping and displays huge deformation for 

static loads. Therefore, LRB inserts a lead plug in RB, as shown in Fig. 5, to 

provide damping to response to earthquakes and to resist static loads. Because 

the lead plug inserted into the LRB is characterized by almost full elasto-plastic 

hysteresis loop, the rigidity of the bearing after the yielding of the lead is equal 

to that of RB, and the capacity of LRB can be determined by vertical load, random 

horizontal reaction, and scale of construction expansion. Generally, in the case of 

designing a LRB, the diameter of the lead plug that is determined by the 

coefficient of horizontal reaction and should be ideally small (Han et al. 2009). 

Fig. 5 shows a view of lead rubber bearing and Fig. 6 shows the using LRB in 

bridges. 
 

 

Figure 5.  A view of lead rubber bearing (Ju et al. 2020) 

 

     
Figure 6.  The using LRB in bridges (Photo by Saman Mansouri) 
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LRB can be modeled with the following specifications (Torunbalci and 

Ozpalanlar, 2008): 
Link element= Rubber Isolator 
U1→ linear Effective Stiffness= 1500000 KN/M 

U2=U3 → linear Effective Stiffness= 800 KN/M 

U2=U3 → Nonlinear Stiffness=2500 KN/M  

U2=U3 → Yield Strength= 80 

U2=U3 → Post Yield Stiffness Ratio= 0.1 
 

3.3  Friction pendulum bearing (FPB) 
The FPB are normally installed between the superstructure and the substructure 

as shown in Fig. 7, with equal distribution of the weight of the superstructure on 

each FPB. Fig. 8 shows a view of theoretical hysteresis curve of the FPB. Fig. 9 

shows a view of the friction pendulum bearing.  

 
Figure 7. The isolated bridge with 2 FPBs in view of the axial direction of the bridge (Li et al. 

(2020)) 

 

 
Figure 8.  Bilinear hysteresis model (Li et al. (2020)) 
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Figure 9.  A view of the friction pendulum bearing (Okamura and Fujita, 2007) 
 

FPB can be modeled with the following specifications (Torunbalci and 

Ozpalanlar, 2008): 

Link element= Friction isolator  

U1 → linear Effective Stiffness= 15000000 KN/M 

U1 → Nonlinear Effective Stiffness= 15000000 KN/M 

U2=U3 → linear Effective Stiffness= 750 KN/M 

U2=U3 → Nonlinear Stiffness=15000 KN/M  

U2=U3 → Friction Coefficient Slow= 0.03 

U2=U3 → Friction Coefficient Slow= 0.05 

U2=U3 → Rate Parameter= 40 

U2=U3 → Radius of Sliding Surface= 2.23 

 

4  THE STUDIED MODELS 
The conventional neoprene (rubber bearings with high damping) has been used 

between decks with abutments and cap beams of this bridge. Since the neoprene 

bearings do not have the high capacity of energy dissipation due to the 

earthquake, therefore, to this end, appropriate strategies to seismic retrofit of the 

bridge should be adopted. The method of this study is, first, the alternative effects 

of EB (the second model), LRB (the third model) and FPB (the forth model) 

instead of neoprene have been evaluated and compared in three separate models 

and then when the deck with rigid connection is on the cap beams and abutments 

(the first model) have been evaluated in another model. Fig. 10 shows a view of 

the studied model. 
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Figure 10a. A three-dimensional view of the studied model 

 
Figure 10b. A view of plan of the studied model 

Figure 10.  The studied model 

 

5   EIGEN VECTOR ANALYSIS 
In tables. 1 to 8, modal participating mass ratios and modal participation factors 

are investigated for all models. According to Tables. 1 and 2, the dominant mode 

in the direction y is the first mode of the structure and the dominant mode in the 

direction x is the fifteenth mode of the structure. 
 

Table 1.  Modal participating mass ratios for model 1 
Output 

Case 

Step 

Type 

Step 

Num 

Period UX UY Sum UX Sum UY 

Text Text Unit less Sec Unit less Unit less Unit less Unit less 

MODAL Mode 1 0.14967 2.552E-13 0.6229 2.552E-13 0.6229 

MODAL Mode 2 0.097826 4.019E-12 0.00000494 4.274E-12 0.6229 

MODAL Mode 3 0.094633 0.0001316 3.299E-15 0.0001316 0.6229 

MODAL Mode 4 0.094459 1.624E-15 0.0001457 0.0001316 0.6231 

MODAL Mode 5 0.0884 1.362E-13 0.0016 0.0001316 0.6247 

MODAL Mode 6 0.087574 0.0014 6.422E-16 0.0015 0.6247 

MODAL Mode 7 0.081984 1.866E-13 0.00005467 0.0015 0.6247 

MODAL Mode 8 0.080536 0.002 1.87E-14 0.0036 0.6247 

MODAL Mode 9 0.078159 1.751E-13 0.0022 0.0036 0.627 

MODAL Mode 10 0.078037 0.00003259 2.802E-14 0.0036 0.627 

MODAL Mode 11 0.076183 0.0004202 3.885E-15 0.004 0.627 

MODAL Mode 12 0.075215 0.0014 1.687E-15 0.0054 0.627 

MODAL Mode 13 0.07153 0.0043 2.613E-14 0.0098 0.627 

MODAL Mode 14 0.068336 0.007 1.485E-12 0.0168 0.627 

MODAL Mode 15 0.066005 0.7423 1.703E-09 0.7591 0.627 
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Table 2. Modal participation factors for model 1 

Output 
Case 

Step 
Type 

Step 
Num 

Period UX UY Modal 
Mass 

Modal Stiff 

Text Text Unit 

less 

Sec Tonf-cm Tonf-cm Tonf-cm-

s2 

Tonf-cm 

MODAL Mode 1 0.14967 -0.000029 47.445713 0.1 176.2332 

MODAL Mode 2 0.097826 -0.000115 -0.133604 0.1 412.5218 

MODAL Mode 3 0.094633 0.660237 0.000003452 0.1 440.8351 

MODAL Mode 4 0.094459 -0.000002319 0.725518 0.1 442.4562 

MODAL Mode 5 0.0884 0.000021 -2.409964 0.1 505.1878 

MODAL Mode 6 0.087574 2.153852 0.000001523 0.1 514.7701 

MODAL Mode 7 0.081984 -0.000025 0.444463 0.1 587.3526 

MODAL Mode 8 0.080536 -2.599875 0.000008226 0.1 608.6686 

MODAL Mode 9 0.078159 -0.000024 -2.839625 0.1 646.2551 

MODAL Mode 10 0.078037 0.328541 0.00001 0.1 648.269 

MODAL Mode 11 0.076183 -1.179793 0.000003748 0.1 680.2127 

MODAL Mode 12 0.075215 2.166207 -0.000002476 0.1 697.8342 

MODAL Mode 13 0.07153 -3.7931 -0.000009718 0.1 771.5948 

MODAL Mode 14 0.068336 -4.826034 0.000073 0.1 845.3889 

MODAL Mode 15 0.066005 49.585043 -0.002481 0.1 906.1601 

 

By examining the shapes of the dominant modes of the structure according to 

Figs. 11 and 12, it is clear that in the first mode, the deck and columns are 

deformed simultaneously, and in the fifteenth mode, the deformations of the deck 

and columns are intensified. 

 

 
Figure 11a.  A three-dimensional view of the first mode of the first model 
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Figure 11b. An another three-dimensional view of the first mode of the first model 

 

 
Figure 11c. A view of plan of the first mode of the first model 

Figure 11.  The first mode of the first model 

 

 
Figure 12a. A three-dimensional view of the fifteenth mode of the first model 
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Figure 12b. An another three-dimensional view of the fifteenth mode of the first model 

 
Figure 12c. A view of plan of the fifteenth mode of the first model 

Figure 12.  The fifteenth mode of the first model 

 

According to Tables. 3 and 8, the dominant mode in the direction x is the first 

mode of the structure and the dominant mode in the direction y is the second 

mode of the structure for second, third and fourth models, respectively.    
 
 

Table 3.  Modal participating mass ratios for model 2 

Output 

Case 

Step 

Type 

Step 

Num 

Period UX UY Sum UX Sum UY 

Text Text Unit 

less 

Sec Unit less Unit less Unit less Unit less 

MODAL Mode 1 0.964956 0.7658 4.765E-20 0.7658 4.765E-20 

MODAL Mode 2 0.931987 1.832E-20 0.6774 0.7658 0.6774 

 

Table 4.  Modal Participation Factors for model 2 

Output 

Case 

Step 

Type 

Step 

Num 

Period UX UY Modal Mass Modal 

Stiff 

Text Text Unit 

less 

Sec Tonf-cm Tonf-cm Tonf-cm-s2 Tonf-cm 

MODAL Mode 1 0.964956 50.364892 -1.312E-08 0.1 4.2398 

MODAL Mode 2 0.931987 7.789E-09 49.477104 0.1 4.5451 
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Table 5.  Modal participating mass ratios for model 3 

Output 

Case 

Step 

Type 

Step Num Period UX UY Sum UX Sum UY 

Text Text Unit less Sec Unit less Unit less Unit less Unit less 

MODAL Mode 1 1.394352 0.7489 1.843E-18 0.7489 1.843E-18 

MODAL Mode 2 1.368985 2.162E-18 0.6729 0.7489 0.6729 

 

Table 6.  Modal participation factors for model 3 

Output 

Case 

Step 

Type 

Step Num Period UX UY Modal 

Mass 

Modal 

Stiff 

Text Text Unit less Sec Tonf-cm Tonf-cm Tonf-cm-s2 Tonf-cm 

MODAL Mode 1 1.394352 49.804711 8.161E-08 0.1 2.0306 

MODAL Mode 2 1.368985 8.463E-08 -49.313276 0.1 2.1065 

 

Table 7.  Modal participating mass ratios for model 4 

Output 

Case 

Step 

Type 

Step Num Period UX UY SumUX SumUY 

Text Text Unitless Sec Unitless Unitless Unitless Unitless 

MODAL Mode 1 1.437885 0.7478 9.442E-19 0.7478 9.442E-19 

MODAL Mode 2 1.413183 1.078E-18 0.6727 0.7478 0.6727 

 

Table 8.  Modal participation factors for model 4 

Output 

Case 

Step 

Type 

Step Num Period UX UY Modal 

Mass 

Modal 

Stiff 

Text Text Unit less Sec Tonf-cm Tonf-cm Tonf-cm-s2 Tonf-cm 

MODAL Mode 1 1.437885 49.768281 5.841E-08 0.1 1.9095 

MODAL Mode 2 1.413183 5.975E-08 -49.303663 0.1 1.9768 

 

In Figs. 13 to 18, the shape of the dominant modes of the second to fourth models 

is shown. According to tables. 3 to 8, the first and second modes in the second to 

fourth models are the dominant modes in the directions x and y, respectively, 

which by examining modes shapes of them according to Figs. 13 to 18, it is clear 

that in these modes the deck slides on the seismic bearings without having the 

deformation. 
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Figure 13a. A three-dimensional view of the first mode of the second model 

 

 
Figure 13b. An another three-dimensional view of the first mode of the second model 

 

 
Figure 13c. A view of plan of the first mode of the second model 

Figure 13.  The first mode of the second model 
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Figure 14a. A three-dimensional view of the second mode of the second model 

 

 
Figure 14b. An another three-dimensional view of the second mode of the second model 

 

 
Figure 14c. A view of plan of the second mode of the second model 

Figure 14.  The second mode of the second model 
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Figure 15a. A three-dimensional view of the first mode of the third model 

 

 
Figure 15b. An another three-dimensional view of the first mode of the third model 

 

 
Figure 15c. A view of plan of the first mode of the third model 

Figure 15. The first mode of the third model 
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Figure 16a. A three-dimensional view of the second mode of the third model 

 

 
Figure 16b. An another three-dimensional view of the second mode of the third model 

 

 
Figure 16c. A view of plan of the second mode of the third model 

Figure 16.  The second mode of the third model 
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Figure 17a.  A three-dimensional view of the first mode of the fourth model 

 
Figure 17b.  An another three-dimensional view of the first mode of the fourth model 

 

 
Figure 17c. A view of plan of the first mode of the fourth model 

Figure 17.  The first mode of the fourth model 
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Figure 18a. A three-dimensional view of the second mode of the fourth model 

 

 
Figure 18b. An another three-dimensional view of the second mode of the fourth model 

 

 
Figure 18c. A view of plan of the second mode of the fourth model 

Figure 18.  The second mode of the fourth model 

 
By examining the modal participating mass ratios and modal participation factors 

of different models according to tables 1 to 8 and the shapes of their modes 

according to Figs. 11 to 18, it is clear that in the first model, most of the energy 

leads to vibrations is dissipated in the first and fifteenth modes, in which the 

structures have complex distortions in these modes, but most of the energy leads 
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to vibrations in models that use seismic bearings is dissipated in their first and 

second modes, which are the dominant modes and in these modes, structures do 

not have complex deformations. 

By investigating the periods of the first modes of the studied models according 

to Fig. 19, it is clear that by using EB, LRB and FPB compared to the first model, 

the stiffness of the structure decreases and its period increases several times, so 

that the period of the first mode of the first model is 0.14 seconds, which increases 

to 0.96, 1.39 and 1.43 second using EB, LRB and FPB, respectively. 

 

 

Figure 19.  The period of the studied models 

 

6  THE CHARACTERISTICS OF SELECTED EARTHQUAKES 
The selected accelerograms were related to the Chi-Chi, Landers, Loma Prieta, 

Northridge, Parkfield, San Fernando, and Tabas earthquakes, which were 

selected and scaled according to Iranian Standard No. 2800 (Mansouri, 2017). 

Characteristics, including the magnitude, the distance from the fault, and the 

mechanism of the site, were considered in the selection of the accelerograms.  

These accelerograms were related to the stations registered at the distance of 

20 to 60 kilometers from the fault with no near-fault earthquakes characteristics, 

such as forward directivity and fling-step. Furthermore, the magnitude of all the 

selected earthquakes was between 6.5 and 7.5 Richter. The spectrum of each 

earthquake is shown in Fig. 20, and the spectrum of Iranian Standard No. 2800 

and spectrum of earthquakes' mean is indicated in Fig. 21. 
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Figure 20.  The spectrums of selected earthquakes 

 

  
Figure 21. The comparison of the spectrum of Iranian Standard No. 2800 with earthquakes' mean 

spectrum. 

 

7   NONLINEAR TIME HISTORY ANALYSIS 
The seismic response of the studied bridge was investigated subjected to two 

components of horizontal orthogonal of Tabas earthquake. According to Fig. 22, 

point Deck is at the middle of the deck, and point Cap beam is in the middle of 

the cap beam. The unit system of all graphs and tables is in Ton-cm.  
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Figure 22a.  Point Deck 

 
Figure 22b.  Point Cap beam 

Figure 22.  The studied points 

 

7.1  Results of lateral displacement  
In Figs. 23 to 30, the results of the horizontal displacements of points Deck and 

Cap beam are presented. 

 

Figure 23. The lateral displacement of points Deck and Cap beam in longitudinal direction (X) in 

model 1. 

 

Deck 

Cap beam 
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Figure 24. The lateral displacement of points Deck and Cap beam in transverse direction (Y) in 

model 1. 
 

 
Figure 25.  The lateral displacement of points Deck and Cap beam in longitudinal direction (X) in 

model 2. 
 

 
Figure 26. The lateral displacement of points Deck and Cap beam in transverse direction (Y) in 

model 2. 
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Figure 27. The lateral displacement of points Deck and Cap beam in longitudinal direction (X) in 

model 3. 
 

 

Figure 28. The lateral displacement of points Deck and Cap beam in transverse direction (Y) in 

model 3. 
 

 
Figure 29. The lateral displacement of points Deck and Cap beam in longitudinal direction (X) in 

model 4. 
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Figure 30. The lateral displacement of points Deck and Cap beam in transverse direction (Y) in 

model 4. 

 

By examining Figs. 23 and 24, it is clear that in the first model, due to the 

earthquake, the horizontal displacement of the studied points in the longitudinal 

and transverse directions is equal to each other and is very small. 

According to Figs. 25 to 30 in the second, third and fourth models, the deck 

slips due to the earthquake on the seismic bearings and the displacement of the 

cap beams is much less than the deck and is almost zero. Sliding deck under the 

effect of earthquake on the cap beams and abutments in the second to fourth 

models compared to the integrated behavior of the deck with the cap beams and 

abutments in the first model helps to prevent common seismic damages at the 

connection between deck with the cap beams and abutments.  

The maximum horizontal displacement of the cap beams in the second, third 

and fourth models is approximately equal to zero, and the maximum displacement 

of the deck in the longitudinal and transverse directions for the second model is 

6.7 and 7.34cm, in the third model is equal to 4.9 and 4.6cm and in the fourth 

model is equal to 9 and 11.3cm, respectively. 

 

7.2   Results of input energy and kinetic energy 
Figs. 31 to 38 show the Input energy and Kinetic energy values for different 

models. 

                                             



Mansouri                                                                                                                          77 

 
 

 
Figure 31. The results of Input energy of the bridge under the influence of Tabas earthquake for 

model 1. 

 

Figure 32.  The results of Kinetic energy of the bridge under the influence of Tabas earthquake for 

model 1. 

 

Figure 33. The results of Input energy of the bridge under the influence of Tabas earthquake for 

model 2. 
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Figure 34. The results of Kinetic energy of the bridge under the influence of Tabas earthquake for 

model 2. 

 

Figure 35.  The results of Input energy of the bridge under the influence of Tabas earthquake for 

model 3. 

 

Figure 36.  The results of Kinetic energy of the bridge under the influence of Tabas earthquake for 

model 3. 
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Figure 37. The results of Input energy of the bridge under the influence of Tabas earthquake for 

model 4. 
 

 
Figure 38. The results of Kinetic energy of the bridge under the influence of Tabas earthquake for 

model 4. 
 

 

Figure 39.  Input energy and Kinetic energy results for the studied models. 
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Fig. 39 shows the Input energy and Kinetic energy values for different models. It 
is clear that in the first model, the bridge has significant stiffness, for this model, 

the values of Input energy and Kinetic energy are not significant for the structure. 
By using seismic bearings, the stiffness of the bridge is reduced and as a result, 

the Input energy and Kinetic energy values increase significantly for the second 

to fourth models compared to the first model.  
 

7.3  Results of base shear 
According to Fig. 40, the results of studies indicated that the application of the 

using seismic bearings could affect the base shear of the studied bridge 

considerably than its non-application. Fig. 40 shows the result of base shear in 

longitudinal (X) and transversal (Y) directions for all models.  

 

 
Figure 40.  The results of base shear of the bridge in longitudinal (X) and transversal (Y) directions 

under the influence of Tabas earthquake  

 

According to Fig. 40, the base shear for the first model in the directions x and y 

is equal to 1081 and 1505 tons, respectively. In the second model, by using 

elastomeric bearing, the base shear of the bridge is reduced and got to 825 and 

853.6 tons, respectively. In the third model, with using LRB in the bridge, the 

base shear of the structure is reduced and reached 563.7 and 405.3 tons, based on 

order. The base shear in the fourth model, which uses FPB in the bridge, in the 

directions x and y is equal to 541.1 and 370.2, respectively. 
 

8  CONCLUSION 
In the isolated bridges, the first and second modes of the structure are the 

dominant modes, in which the columns are without deformation and only the 

deck slides on the seismic bearings, but in the first model (integrated bridge), the 

first and fifteenth modes are the dominant modes, in which the decks and columns 

undergo complex deformations. 
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By examining modal participation factors and modal participating mass ratios for 

the studied structures and the shape of their modes, it is clear that by using seismic 

bearings, complex deformations of decks and columns can be prevented 

compared to the first model (integrated bridge) and most of the energy due to 

vibrations in the isolated bridges compared to the integrated bridges is dissipated 

in modes (dominant modes) in which the structure has very simple deformations. 

Separating the bridge deck from the cap beams and abutments and placing 

seismic bearings in this place (second, third and fourth models) compared to the 

rigid connection of the deck to the cap beams and abutments (first model) reduces 

the stiffness of the structure and increases its period. The period of the first mode 

of the first model is 0.14 seconds, which increases to 0.96, 1.39 and 1.43 seconds 

using EB, LRB and FPB, respectively. 

By examining the horizontal displacement of the deck and cap beams, it is 

clear that in the first model, where the deck is rigidly connected to the cap beams 

and abutments, the horizontal displacement of the deck and cap beams is equal 

and its values is very small. This seismic behavior causes a significant seismic 

response of the structure, but by using seismic bearings, the deck slides on this 

equipment and this seismic behavior causes a significant reduction of the seismic 

response of the structure. 

It is clear that in the first model, due to the earthquake, the horizontal 

displacement of the studied points in the longitudinal and transverse directions is 

equal to each other and is very small. In the second, third and fourth models, the 

deck slips due to the earthquake on the seismic bearings and the displacement of 

the cap beams is much less than the deck and is almost zero. The maximum 

displacement of the deck in the longitudinal and transverse directions for the 

second model is 6.7 and 7.34cm, in the third model is equal to 4.9 and 4.6cm and 

in the fourth model is equal to 9 and 11.3cm, respectively. 

In the first model, the bridge has significant stiffness that the values of Input 

energy and Kinetic energy are not significant for the bridge. By using seismic 

bearings, the stiffness of the bridge is reduced and as a result, the Input and 

Kinetic energy values increase significantly for the second to fourth models 

compared to the first model. 

By examining the results of the base shear for different models, it is clear that 

the using seismic bearings in between the deck with cap beams and abutments 

compared to the case where the deck with a rigid connection is on the cap beams 

and abutments leads to reduce the base shear of the bridge. By comparing the 

results of the second, third and fourth models, it is clear that the base shear in the 

mode of using FPB is reduced to a greater extent than the mode of using EB and 

LRB. So that, the base shear for the first model in the directions x and y is equal 

to 1081 and 1505 tons, respectively. In the second model, by using elastomeric 

bearing, the base shear of the bridge is reduced and reached 825 and 853.6 tons, 

based on order. In the third model, by using LRB, the base shear of the structure 

is reduced and got to 563.7 and 405.3 tons, based on order. The base shear in the 
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fourth model, which uses FPB in the bridge, in the directions x and y is equal to 

541.1 and 370.2, respectively. 

Decreasing the stiffness of the structure and increasing its period, increasing 

the Input and Kinetic energy of the structure and significantly reducing the base 

shear of the structure indicate the seismic retrofit of the structure in the case of 

using seismic bearings compared to the rigid connection between the deck to cap 

beams and abutments. 

According to the results of the present study, the best solution among the 

options considered for seismic retrofit of the studied bridge is to replace FPB with 

conventional neoprene. 
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