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ABSTRACT: In this paper, free vibrations of Functionally Graded decks Plates 

(FGP) with two distribution even and uneven of porosity are investigated. The 

plate is modeled using higher-order shears deformation plate theory. It has been 

observed that during the manufacture of (FGP), micro-voids and porosities can 

occur inside the material. In the resolution and the determination of the 

equations of motion Hamilton principle is used. Since the deck plate is simply 

supported the Navier procedure will be retained. Thus, in this work, the 

investigation of the free vibration analysis of (FGP) deck plate taking into 

account the perfect and influence of these imperfect is established. Natural 

frequencies are obtained for porous (FGP) with edges simply supported and 

verified with the results shown in the literature. A numerical study is conducted 

to examine the effects of various parameters such as material properties, 

thickness ratios, geometric ratio and the porosity coefficient on natural 

frequencies of the (FGP). It is found that the effects of exponent graded and the 

porosity coefficient on the natural frequencies are significant. 
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1   INTRODUCTION 
Functionally graded material (FGM) is a new class of composite materials 

whose microstructure and composition vary gradually and continuously with 

position so as to optimize the mechanical and thermal performance of the 

structure which they constitute. The desired functions are integrated, from the 

design, at the very heart of the material; this is done by choosing the appropriate 

material according to specific applications and environmental loads for each 

interface. These materials have multiple advantages with strength / weight ratios 
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and very high thickness / weight, which can make them attractive from the point 

of view of their application potential. The concept of functionally graded 

material was first considered in Japan in 1984 during a space plane project. The 

functionally graded materials (FGM) are produced by mixing two or more 

materials for a gradual distribution of the volume fractions of the constituents 

[1]. In practice, functionally graded materials (FGMs) find their applications in 

many fields, such as biomaterials, engineering structures, aerospace, electronics, 

aerospace, electronics, optics, etc. [2] – [12]. 

Several studies have been performed to analyze the vibration of functionally 

graded decks plates. The exact solutions for free and forced vibrations of simply 

supported functionally graded rectangular decks plates for three dimensional 

were presented by [13]. The free vibrations of functionally graded decks plates 

by using a global collocation method, the first and the third-order shear 

deformation plate theories were analyzed by [14]. Static deformations, free and 

forced vibrations of a thick rectangular functionally graded elastic plate were 

analyzed by using a higher order shear and normal deformable plate theory [15] 

– [17]. Three dimensional vibration solutions for rectangular functionally 

graded plates were presented in [18]. Natural frequencies and buckling stresses 

of decks plates made of functionally graded materials were analyzed taking into 

account the effects of transverse shear and normal deformations and rotatory 

inertia [19]. 

Several works and studies have been carried out to analyze the mechanical 

behavior of functionally graded plates with porosity and porous structures. They 

investigated the effect of porosity on the natural frequency of thick porous 

cellular plates by using Carrere unified formulation [20] and [21]. The free 

vibration characteristics of isotropic rigid porous rectangular decks plates under 

undrained condition and the effect of deformation coupling between solid and 

fluid on was studied by the same authors in Reference [22]. Vibration and 

buckling of annular sectorial porous plates under in-plane uniform compressive 

loading was discussed thoroughly in [23]. The investigation for the analysis of 

sandwich plates (FGM) with porosity using high order shear-deformation theory 

was presented by [24]. 

However, in the manufacture of (FGMs), micro-porosities or voids can occur 

in the materials during the sintering process. This is due to the large difference 

in solidification temperature among the material constituents [25]. The 

porosities that occur within (FGM) specimens made by a sequential multi-step 

infiltration technique is discussed in [26]. Therefore, it is important to take into 

account the effect of porosity in the design of (FGM) structures subjected to 

static and dynamic loads [27] – [32]. Consequently, in recent years more 

attention has been paid to studies of static and dynamic behavior of structures of 

(FGM) materials. 

The present research focuses on the free vibration analysis performance of 

simply supported porous functionally graded plates (FGP) for different porosity 
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distributions based on the higher-order shear deformation plate theory (HSPT). 

Two types of porosity distributions, through the thickness direction of the plate, 

are supposed: even porosity and uneven porosity. The (FGP) plate are supposed 

to vary in the thickness direction according to a power law, which is modified to 

approach the characteristics of the materials in order to take into account the 

influence of the porosities. This theory allows a variation of higher order of the 

axial displacement through the depth of the plate.  

Therefore, the factor of correction of shear is not necessary. The four 

unknown shear deformation theory is employed to deduce the equations of 

motion from Hamilton’s principle. The equations of motion of the (FGP) are 

determined by applying Hamilton’s principle and a Navier-type analytical 

solution. The accuracy of this theory is verified by comparing the developed 

results with those obtained using other plate theories. The effects of various 

parameters such as volume fraction and material index, porosity distribution and 

length /thickness ratio on natural frequencies of simply supported (FGP) are 

discussed. 

 

2    THEORETICAL FORMULATIONS 

2.1  Description of the model 
Consider a thick rectangular deck plate (FGP) of length a, width b and thickness 

h made of functionally graded material together with the adopted coordinate 

system as shown in Figure 1. As can be observed in Figure 2(a) and Figure 2(b), 

the embedded (FGP) deck plate becomes an imperfect (FGP) plate due to the 

effect of even and uneven porosities in its material properties distribution. The 

material properties of the deck plate (FGP), such as Young’s modulus E, is 

assumed to be a function of the volume fraction of constituent materials.  

 

 
Figure 1.  Geometric configuration of deck plate (FGP) with porosity 
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                   (a) Even Porosity                                                         (b) Uneven Porosity 

Figure 2.  Distributions porosity models 

 

2.2   POROSITY-DEPENDENT FUNCTIONALLY GRADED 

MATERIALS 
Assume that the (FGP) deck plate is made of a mixture of metal and ceramic. It 

is manifested that the material properties of the (FGP) deck plate (i.e. Young’s 

modulus E, Poisson’s ratio ν, and mass density ρ) are changed continuously 

with the material composition (i.e. ceramic and metal) in the thickness 

direction. The bottom surface of the rectangular deck plate is assumed to be 

metal and the top surface is made of ceramic. Furthermore, the influence of 

porosities, which may exist inside the materials of the (FGP) plate during the 

production, is included. The modified mixture rule for the two-phase (FGP) 

deck plate with even porosities can be expressed as follows: [30]. 
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In which the subscripts c and m represent the ceramic and metal, respectively.  

Also, the superscript P is the volume fraction index (i.e. power-law index) 

that defines the material variation characterization through the thickness of the 

deck plate, and ξ (0 ≤ ξ ≤ 1) shows the porosity volume fraction. Ec and Em are 

the material properties of the ceramic and the metal, respectively. 

By expanding Equation (1), the material properties of imperfect (FGP) deck 

plate with even porosities (i.e. the model is shown in Figure 2 (a)) can be 

rewritten as follow [27]: 
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For the second distribution model, the porosities may spread randomly through 

the thickness direction (i.e. known as uneven distribution) of the (FGP) deck 

plate (the model is shown in Figure 2 (b)) as follow [27]:
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3    KINEMATICS AND STRAINS RELATIONS 
Based on the assumptions made in the previous section, the displacements fields 

can be defined by [33]: 
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In which t represents the time, u0 and v0 signify the displacement functions of 

the middle surfaces of the deck plate. Also, f (z) is the representative shape 

function that denotes the distribution of transverse shear stress or strain along 

the deck plate thickness. The representative shape function and its first 

derivative are illustrated in equation (5) below:  
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The high order shear deformation theory (HSDT) takes into account transverse 

shear strain in its formulation with the following assumptions. 

1) The displacements are small in comparison with the deck plate thickness, 

and, therefore, strains involved are infinitesimal. 

2) The transverse displacement, w includes two components one of bending 

(wb), and the other of shear (ws). The bending and shear parts are functions 

of coordinates x, y and t only, and the stretching part is a function x, y, t and 

z. 

3) The in-plane displacements (u and v) in coordinates x and y are divided into 

extension, bending and shear parts. It is shown that the in-plane 

displacements are functions of x, y, t and z in which the bending parts are 

similar to those presented by classical plate theory (CPT), and shear parts of 

that are in conjunction with the hyperbolic variations of shear strains. 

The strains associated with the displacements in Equation (4) are: 
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The stress-strain relations for an isotropic linear elastic plate, are written in the 

following equation: 
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where (σx , σy , τxy , τyz , τyx)  and (εx , εy , γxy , γyz , γyx) are the stress and strain 

components, respectively. Using the material properties defined in Equations 

(2a) and (3a), the stiffness coefficients, Qij, can be expressed as in the following 

equation: 
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4   EQUATIONS OF MOTION 

Hamilton’s principle is used herein to derive the equations of motion. The 

principle can be stated in analytical from as stated in [34]. 

0

0

T

( U K )dt− =  
                                           

(10) 

Where δU: variation of strain energy; δK: variation of kinetic energy. The 

variation of strain energy of the plate is calculated by  
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Where, h/2 is the top surface, and stress resultants and couples N, M, and S are 

defined by.  

( )
2

2

1x y xy
h/

b b b
x y xy x y xy

h/s s s
x y xy

N , N , N

M , M , M , , z dz,

f ( z )M , M , M

  

−

 
  

   
=   

   
   


 

( ) ( )
2

2

h/
s s
xz yz xz yz

h/

S ,S , g( z )dz.

−

=   
                                  (12)

  

The variation of kinetic energy of the deck plate can be written as in the 

following equation.  

𝛿𝐾 = ∫ ∫ 𝜌𝑍(𝑢̈𝛿𝑢 + 𝑣̈𝛿𝑣 + 𝑤̈𝛿𝑤)𝑑𝐴𝑑𝑍
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                    (13) 

Where dot-superscript convention indicates the differentiation with respect to 

the time variable t; and (I1, I2, I3, I4, I5, I6) are mass inertias defined as shown in 

equation (14) below: 
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Substituting the expressions for δU and δΚ from Equations (11) and (13) into 

Equation (10), integrating the displacement gradients by parts and setting the 

coefficients δu, δv, δwb, and δws to zero separately. Thus, equilibrium equations 

associated with the present shear deformation theory could be obtained, 
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By substituting Equation (6) into Equation (8) and integrating through the 

thickness of the deck plate, the stress resultants are given as follows: 
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Where Aij, Bij, etc. are the deck plate stiffness defined by: 
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 (18)       

Rectangular deck plates are generally classified according to the type of support 

used. This research paper is concerned with the exact solution for a simply 

supported FG plate. The following boundary conditions are imposed at the side 

edges:
                                      

0 0 0b sb s
b s x x x

w w
v w w   N M M and x ,  a

y y

 
= = = = = = = = =

              
(19a)    

     

0 0 0 0b sb s
b s y y y

w w
u w w ,N M M and y ,  b

x x

 
= = = = = = = = =

            
(19b)     

Following the Navier solution procedure, we assume the following form of 

solution for (u, v, wb, ws) that satisfies the boundary conditions given in 

Equation (19).                                                                                                           

1 1

i t
mn

i t
mn

i t
b m n bmn

i ts
smn

U e cos(  x )sin(  y )u

v V e sin(  x )cos(  y )
,

w W e sin(  x )sin(  y )

w
W e sin(  x )sin(  y )

 

= =

 
 

 
 
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 

 

 

 
                         

 

(20) 

Where am / =  and bn / = , « m » and « n »are mode numbers and Umn, 

Vmn, Wbmn, and Wsmn are arbitrary parameters. These parameters could be 

combined into a system of equations as shown in equation (21) below:                                                                                                                                                

   ( )   2 0K M ,−  =
                                 

       (21) 

Where [K] and [M], stiffness and mass matrices, respectively, which are 

represented as: 

11 12 13 14 11

12 22 23 24 222

13 23 33 34 33 34

14 24 34 44 34 44

0 0 0 0

0 0 0 0

0 0 0

0 0 0

mn

mn

bmn

smn

a a a a m U

a a a a m V
ω

a a a a m m W

a a a a m m W

        
        

       − =                          

          (22) 

In which, 

𝑎11 = −(𝐴11𝜆2 + 𝐴66𝜇2); 𝑎12 = −𝜆𝜇(𝐴12 + 𝐴66); 𝑎13

= 𝜆(𝐵11𝜆2 + (𝐵12 + 2𝐵66)𝜇2); 
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𝑎14 = 𝜆(𝐵11
𝑠 𝜆2 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝜇2); 𝑎21 = 𝑎12;  𝑎22 = −(𝐴66𝜆2 + 𝐴22𝜇2);  

𝑎23 = 𝜇((𝐵12 + 2𝐵66)𝜆2 + 𝐵22𝜇2); 𝑎24 = 𝜇((𝐵12
𝑠 + 2𝐵66

𝑠 )𝜆2 + 𝐵22
𝑠 𝜇2); 𝑎31

= 𝑎13;  𝑎32 = 𝑎23;  

𝑎33  =  −(𝐷11𝜆4) + 2(𝐷12 + 2𝐷66𝜆2𝜇2 + 𝐷22𝜇4); 𝑎34  

=  −(𝐷11
𝑠 𝜆4) + 2(𝐷12

𝑠 + 2𝐷66
𝑠 𝜆2𝜇2 + 𝐷22

𝑠 𝜇4); 

𝑎41 = 𝑎14;  𝑎42 = 𝑎24; 𝑎31 = 𝑎13;  𝑎43 = 𝑎34; 𝑎44  

=  −(𝐻11
𝑠 𝜆4)

+ 2(𝐻12
𝑠 + 2𝐻66

𝑠 𝜆2𝜇2 + 𝐻22
𝑠 𝜇4 + 𝐴55

𝑠 𝜆2 + 𝐴44
𝑠 𝜇2)               (23) 

11 1 13 2 14 4m = -I ; m = I  ; m = I ;   

22 1 23 2 24 4m  = -I  ; m  = I  ; m  = I                             
(24) 

 

5   NUMERICAL RESULTS AND DISCUSSIONS 

In this section, some numerical examples are performed and discussed to 

demonstrate the effectiveness of the theory proposed in the responses of the free 

vibration of simply supported (FGM) deck plates. Based on the equations of the 

system and the solution procedure in previous section, the numerical results and 

detailed discussions are presented here. For numerical results, an Al/Al2O3 

functionally graded plate (FGP) which is composed of Aluminum and Alumina 

is considered. The Young’s modulus and density of Aluminum are Em=70GPa 

and ρm=2702kg/m3, and that of Alumina Em=380GPa and ρm=3800kg/m3, 

respectively. The non-dimensional entities were used as shown below: 

c cβ=ωh ρ E/ ,    
m mβ=ωh ρ E/ ,    c cω=ωa h ρ E² / /

            
(25) 

Natural frequencies obtained from the present study are compared with those 

available in the literature for (FGP) plates in Table 1, the results are found 

completely coincident with the present approach.  

In Table 2, four fundamental frequencies of simply supported rectangular 

deck plate (FGP) with two different porosity distributions Even and Uneven are 

compared with their counterpart in the literature of Rezaei et al [20] and Askari 

[21]. The results presented show a good agreement with the other results which 

confirm the accuracy of the current approach.  

In Table 3, another comparison is made of the fundamental natural 

frequencies of a rectangular deck plate Al/Al2O3 (b=2a). The same behavior is 

observed. That is to say, there is an excellent agreement between the results 

given by this model and those of the literature used in the study. It should be 

noted that, for validation reasons, the results presented in the three tables are 
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obtained for a (FGM) plate. In the verification process, we could say that the 

present method is reliable for the study of the plates presenting manufacturing 

porosity defects. 

 

Table 1.  Comparison of fundamental frequency ( )β for simply supported (FGP) 

and (a=b=1) 

h/a Method 
p 

0 1 4 

0.05 

Benachour et al [16] 0,0148 0,0113 0,0098 

Belabed et al [17] 0,0148 0,0113 0,0098 

Rezaei et al [20] 0,0148 0,0113 0,0098 

Present 0,0148 0,0113 0,0098 

0.1 

Benachour et al [16] 0,0576 0,0441 0,0380 

Belabed et al [17] 0,0578 0,0449 0,0389 

Rezaei et al [20] 0,0578 0,0442 0,0383 

Present 0,0577 0,0442 0,0381 

0.2 

Benachour et al [16] 0,2112 0,1628 0,1375 

Belabed et al [17] 0,2121 0,1640 0,1383 

Rezaei et al [20] 0,2127 0,1630 0,1405 

Present 0,2113 0,1631 0,1378 

 

Table 2. Comparison of fundamental frequency ( )β for simply supported square 

(b=a=1) deck plate (FGP) (P=1 and h/a=0.05) 

Porosity 

Distribution 
ξ Method 

Mode (m,n) 

(1, 1) (1, 2) (2, 2) (1, 3) 

(Even) 

ξ=0.1 

Rezaei et al [20] 0,0217 0,0538 0,0851 0,1057 

Askari et al [21] 0,0217 0,0537 0,0850 0,1055 

Present 0,0213 0,0527 0,0833 0,1034 

ξ=0.2 

Rezaei et al [20] 0,0210 0,0520 0,0824 0,1024 

Askari et al [21] 0,0210 0,0520 0,0823 0,1022 

Present 0,0203 0,0502 0,0794 0,0985 

(Uneven) 

ξ=0.1 

Rezaei et al [20] 0,0224 0,0553 0,0874 0,1085 

Askari et al [21] 0,0223 0,0552 0,0873 0,1083 

Present 0,0208 0,0514 0,0814 0,1010 

ξ=0.2 

Rezaei et al [20] 0,0225 0,0555 0,0879 0,1091 

Askari et al [21] 0,0224 0,0554 0,0877 0,1087 

Present 0,0191 0,0472 0,0747 0,0927 
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Table 3.  Comparison of natural frequencies (ω ) a rectangular deck plate 

Al/Al2O3 

a/h Model 
P=1 

ξ=0 ξ=0.1 ξ=0.2 

5 
Mouaici et al [31] 2,6476 2,5934 2,5150 

Present 2,64753 2,54205 2,42474 

10 

 
Mouaici et al [32] 2,7937 2,7328 2,6452 

Present 2,79367 2,68017 2,55388 

 

 

 
Figure 3. Dimensionless natural frequency parameter of the (FGM) plates according to the 

material power index “P” and porosity factor, (mode1, a=b and a/h=10) 
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As the material power index increases for (FGM) plates, the dimensionless 

natural frequency will decrease. The variation curves of the natural frequency of 

the first mode of various functionally graded plates, perfect and imperfect and 

for the two distributions of porosity even and uneven as a function of material 

power index parameter ‘’P’’, and for different values of porosity factor were 

presented in Figure 3. It can be seen that the increase of porosity parameter 

leads to an increase of the natural frequency for the first mode. 

 

 
 

 
Figure 4.  Influence of thickness ratio (a/h) on the dimensionless natural frequency parameter (ω ) 

of the perfect and imperfect plate (FGM) for even distribution of porosity  
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Figure 4 shows the influence of thickness ratio (a/h), on the dimensionless 

natural frequency parameter of (FGM) perfect plates (ξ=0) and imperfect plates 

(ξ = 0.2) for the even distribution of porosity. It can be seen that the increase in 

thickness ratio (a/h) decreases the natural frequency. This conclusion implies 

that thickness ratio has a considerable effect on the natural frequency. 

 

 

 
Figure 5.  Dimensionless natural frequency (ω ) as a function of the geometric ratio (b/a) for the 

two distributions of porosity (even and uneven) 

 

Figure 5 studies the variation of the dimensionless natural frequency with the 

thickness ratio as a function of the geometric ratio (b/a) for the two distributions 



Slimane et al.                                                                                                                   47  

of the porosity (Even and Uneven). Decreasing in geometric ratio increases the 

dimensionless natural frequency. Although the increase of the ratio (b/a) 

reduces the dimensionless natural frequency, it is noticed that the ratio (b/a) has 

little influence on the variation of the natural frequency. For geometric ratios 

(b/a≥3), the geometric ratio has practically no effect on the natural frequencies 

and this includes the two distributions of the porosity (Even and Uneven). 

 

 

 
Figure 6.  Variation of the dimensionless natural frequency (ω ) as a function of the thickness 

ratio (a/h) for the two distributions of porosity (even and uneven). 

 

In Figure 6, the variation of the dimensionless natural frequency as a function of 

the thickness ratio (a/h) for the two distributions of the porosity (Even and 
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Uneven) is presented. There is a rapid variation in the frequency for the low 

values of the ratio (a/h) (i.e. for a / h <10) where the deck plate is considered 

thick. Exceeding this ratio, the dimensionless natural frequencies keep a more 

or less constant pace whatever the chosen distribution. In addition, it should be 

noted that the even distribution porosity gives higher values relative to the 

uneven porosity.  

 

6   CONCLUSIONS 
In this research article, an analytical study has been developed for free vibration 

analysis of square and rectangular porous functionally graded plate (FGP). In 

this investigation, the (FGM) plate is assumed to have two distribution of 

porosity Even and Uneven according to the thickness of the deck plate. The 

theory of shear deformations is used solve the equations of motion of the 

Hamiltonian principle. The accuracy of this theory is verified by comparing the 

developed results with those obtained using different numerical and analytical 

techniques and plate theories. Some examples are performed to demonstrate the 

effect of power index, porosity factor, length to thickness ratios and geometric 

ratios on the natural frequency of functionally graded plate (FGP). It has been 

demonstrated that the present analytical formulation method can accurately 

predict natural frequencies of (FGP) plates with porosity (Even and Uneven). 

Also, it can be concluded that the effect of volume fraction distributions, 

slenderness ratio and porosity on the dimensionless natural frequency is 

significant. 
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