
International Journal of Bridge Engineering (IJBE), Vol. 9, No. 1, (2021), pp. 49-63 

 

INTRODUCTION TO COMPOSITE DECKS FIBROUS 

LAMINATES 
 

Osama Mohammed Elmardi Suleiman Khayal  
  

Nile Valley University, Dept. of Mechanical Engineering, Sudan 

e-mail: osamamm64@gmail.com 

 

 
ABSTRACT: In materials science, a composite laminate used in decks 

industry, is an assembly of layers of fibrous materials. The individual layers 

consist of high-modulus, high-strength fibers impregnated in an appropriate 

polymeric, metallic, or ceramic matrix material. Layers of different materials 

may be used, resulting in a hybrid laminate. The individual layers generally 

are orthotropic or transversely isotropic with the laminate then exhibi-

ting anisotropic, orthotropic, or quasi-isotropic properties. Quasi-isotropic 

laminates exhibit isotropic in plane response but are not restricted to isotropic 

out-of-plane response. Depending upon the stacking sequence of the individual 

layers, the laminate may exhibit coupling between in plane and out of plane 

response. An example of bending-stretching coupling is the presence of 

curvature developing as a result of in-plane loading. The properties of a 

composite laminate depend on the geometrical arrangement and the properties 

of its constituents. The exact analysis of such structure – property relationship is 

rather complex because of many variables involved. Therefore, a few 

simplifying assumptions regarding the structural details and the state of stress 

within the composite have been introduced. The deformation of a plate 

subjected to transverse loading is caused either by flexural deformation due to 

rotation of cross-sections, or shear deformation due to sliding of sections or 

layers. The resulting deformation depends on the thickness to length ratio and 

the ratio of elastic to shear moduli. When the thickness to length ratio is small, 

the plate is considered thin, and it deforms mainly by flexure or bending; 

whereas when the thickness to length and the modular ratios are both large, the 

plate deforms mainly through shear. Due to the high ratio of in-plane modulus 

to transverse shear modulus, the shear deformation effects are more pronounced 

in the composite laminates subjected to transverse loads than in the isotropic 

plates under similar loading conditions. 
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1   GENERAL INTRODUCTION 
A composite material can be defined as a combination of two or more materials 

that results in better properties than those of the individual components used 

alone. In contrast to metallic alloys, each material retains its separate chemical, 

physical, and mechanical properties. The two constituents are a reinforcement 

and a matrix. The main advantages of composite materials are their high 

strength and stiffness, combined with low density, when compared with bulk 

materials, allowing for a weight reduction in the finished part. The reinforcing 

phase provides the strength and stiffness. In most cases, the reinforcement is 

harder, stronger, and stiffer than the matrix. The reinforcement is usually a fiber 

or a particulate. Particulate composites have dimensions that are approximately 

equal in all directions. They may be spherical, platelets, or any other regular or 

irregular geometry. Particulate composites tend to be much weaker and less stiff 

than continuous fiber composites, but they are usually much less expensive. 

Particulate reinforced composites usually contain less reinforcement (up to 40 

to 50 volume percent) due to processing difficulties and brittleness. A fiber has 

a length that is much greater than its diameter. The length-to-diameter (l/d) ratio 

is known as the aspect ratio and can vary greatly. Continuous fibers have long 

aspect ratios, while discontinuous fibers have short aspect ratios. Continuous-

fiber composites normally have a preferred orientation, while discontinuous 

fibers generally have a random orientation. Examples of continuous 

reinforcements include unidirectional, woven cloth, and helical winding, while 

examples of discontinuous reinforcements are chopped fibers and random mat. 

Continuous-fiber composites are often made into laminates by stacking single 

sheets of continuous fibers in different orientations to obtain the desired 

strength and stiffness properties with fiber volumes as high as 60 to 70 percent. 

Fibers produce high-strength composites because of their small diameter; they 

contain far fewer defects (normally surface defects) compared to the material 

produced in bulk. As a general rule, the smaller the diameter of the fiber, the 

higher its strength, but often the cost increases as the diameter becomes smaller.  

In addition, smaller-diameter high-strength fibers have greater flexibility and 

are more amenable to fabrication processes such as weaving or forming over 

radii. Typical fibers include glass, aramid, and carbon, which may be 

continuous or discontinuous. The continuous phase is the matrix, which is a 

polymer, metal, or ceramic. Polymers have low strength and stiffness, metals 

have intermediate strength and stiffness but high ductility, and ceramics have 

high strength and stiffness but are brittle. The matrix (continuous phase) 

performs several critical functions, including maintaining the fibers in the 

proper orientation and spacing and protecting them from abrasion and the 

environment. In polymer and metal matrix composites that form a strong bond 

between the fiber and the matrix, the matrix transmits loads from the matrix to 

the fibers through shear loading at the interface. In ceramic matrix composites, 
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the objective is often to increase the toughness rather than the strength and 

stiffness; therefore, a low interfacial strength bond is desirable. 

Composites were first considered as structural materials a little more than half a 

century ago. From that time to now, they have received increasing attention in 

all aspects of material science, manufacturing technology, and theoretical 

analysis. 

The term composite could mean almost anything if taken at face value, since 

all materials are composites of dissimilar subunits if examined at close enough 

details. But in modern materials engineering, the term usually refers to a matrix 

material that is reinforced with fibers. For instance, the term "FRP" which refers 

to Fiber Reinforced Plastic usually indicates a thermosetting polyester matrix 

containing glass fibers, and this particular composite has the lion's share of 

today commercial market. 

Many composites used today are at the leading edge of materials technology, 

with performance and costs appropriate to ultra-demanding applications such as 

space craft, naval industry and bridge engineering technology. But 

heterogeneous materials combining the best aspects of dissimilar constituents 

have been used by nature for millions of years. Ancient societies, imitating 

nature, used this approach as well: The book of Exodus speaks of using straw to 

reinforce mud in brick making, without which the bricks would have almost no 

strength. Here in Sudan, people from ancient times dated back to Merowe 

civilization, and up to now used zibala mixed with mud as a strong building 

material. 

As seen in Table 1 below, which is cited by David Roylance [1], Osama 

Khayal [2] and [3], Turvey and Mahmoud Yassin Osman [4], [5] and [6] the 

fibers used in modern composites have strengths and stiffnesses far above those 

of traditional structural materials. The high strengths of the glass fibers are due 

to processing that avoids the internal or surface flaws which normally weaken 

glass, and the strength and stiffness of polymeric aramid fiber is a consequence 

of the nearly perfect alignment of the molecular chains with the fiber axis. 

 

Table 1.  Properties of composite reinforcing fibers 

Material 
E 

(GN/m2) 
b  

(GN/m2) 

b  
(%) 


 

(Mg/m3) 

/E
 

(MN.m/kg) 

 /b  
(MN.m/kg) 

E-glass 72.4 2.4 2.6 2.54 28.5 0.95 

S-glass 85.5 4.5 2.0 2.49 34.3 1.8 

Aramid 124 3.6 2.3 1.45 86 2.5 

Boron 400 3.5 1.0 2.45 163 1.43 

H S 

graphite 
253 4.5 1.1 1.80 140 2.5 

H M 

graphite 
520 2.4 0.6 1.85 281 1.3 
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Where E is Young's modulus, 𝜎𝑏 is the breaking stress, 𝜀𝑏 is the breaking strain, 

and 𝜌 is the mass density. 

Of course, these materials are not generally usable as fibers alone, and 

typically they are impregnated by a matrix material that acts to transfer loads to 

the fibers, and also to protect the fibers from abrasion and environmental attack. 

The matrix dilutes the properties to some degree, but even so very high specific 

(weight – adjusted) properties are available from these materials. Polymers are 

much more commonly used, with unsaturated Styrene – hardened polyesters 

having the majority of low – to – medium performance applications and Epoxy 

or more sophisticated thermosets having the higher end of the market. 

Thermoplastic matrix composites are increasingly attractive materials, with 

processing difficulties being perhaps their principal limitation. 

Composites possess two desirable features: the first one is high strength to 

weight ratio, and the second is their properties that can be tailored through 

variation of the fiber orientation and stacking sequence which gives the 

designers a wide spectrum of flexibility. The incorporation of high strength, 

high modulus and low-density filaments in a low strength and a low modulus 

matrix material is known to result in a structural composite material with a high 

strength / weight ratio. Thus, the potential of a two-material composite for use 

in aerospace, under-water, and automotive structures has stimulated 

considerable research activities in the theoretical prediction of the behavior of 

these materials. One commonly used composite structure consists of many 

layers bonded one on top of another to form a high-strength laminated 

composite plate. Each lamina is fiber- reinforced along a single direction, with 

adjacent layers usually having different filament orientations. For these reasons, 

composites are continuing to replace other materials used in structures such as 

those mentioned earlier. In fact composites are the potential structural materials 

of the future as their cost continues to decrease due to the continuous 

improvements in production techniques and the expanding rate of sales.    

 

2  STRUCTURE OF COMPOSITES 
There are many situations in engineering where no single material will be 

suitable to meet a particular design requirement. However, two materials in 

combination may possess the desired properties and provide a feasible solution 

to the materials selection problem. A composite can be defined as a material 

that is composed of two or more distinct phases, usually a reinforced material 

supported in a compatible matrix, assembled in prescribed amounts to achieve 

specific physical and chemical properties.   

In order to classify and characterize composite materials, distinction between 

the following two types is commonly accepted; see Vernon [7], Jan Stegmann 

and Erik Lund [8], and David Roylance [1]. 

1. Fibrous composite materials: Which consist of high strength fibers embedded 
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in a matrix. The functions of the matrix are to bond the fibers together to 

protect them from damage, and to transmit the load from one fiber to 

another. See Figure 1. 

2. Particulate composite materials: This composed of particles encased within a 

tough matrix, e.g. powders or particles in a matrix like ceramics. 

 

 
Figure 1.   Structure of a fibrous composite laminates 

 

In this research article the focus will be on fiber-reinforced composite materials, 

as they are the basic building element of a rectangular laminated plate structure. 

Typically, such a material consists of stacks of bonded-together layers (i.e. 

laminas or plies) made from fiber-reinforced material. The layers will often be 

oriented in different directions to provide specific and directed strengths and 

stiffnesses of the laminate. Thus, the strengths and stiffnesses of the laminated 

fiber-reinforced composite material can be tailored to the specific design 

requirements of the structural element being built. 

 

2.1   Mechanical properties of a fiber-reinforced lamina              
Composite materials have many mechanical characteristics, which are different 

from those of conventional engineering materials such as metals. More 

precisely, composite materials are often both inhomogeneous and non-isotropic.  

Therefore, and due to the inherent heterogeneous nature of composite 

materials, they can be studied from a micromechanical or a macro-mechanical 

point of view. In micromechanics, the behavior of the inhomogeneous lamina is 

defined in terms of the constituent materials; whereas in macro-mechanics the 

material is presumed homogeneous and the effects of the constituent materials 

are detected only as averaged apparent macroscopic properties of the composite 

material. This approach is generally accepted when modeling gross response of 

composite structures. The micromechanics approach is more convenient for the 

analysis of the composite material because it studies the volumetric percentages 

of the constituent materials for the desired lamina stiffnesses and strengths, i.e. 

the aim of micromechanics is to determine the moduli of elasticity and strength 

of a lamina in terms of the moduli of elasticity, and volumetric percentage of 

the fibers and the matrix. To explain further, both the fibers and the matrix are 
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assumed homogeneous, isotropic and linearly elastic. 

The fibers may be oriented randomly within the material, but it is also 

possible to arrange for them to be oriented preferentially in the direction 

expected to have the highest stresses. Such a material is said to be anisotropic 

(i.e. different properties in different directions), and control of the anisotropy is 

an important means of optimizing the material for specific applications. At a 

microscopic level, the properties of these composites are determined by the 

orientation and distribution of the fibers, as well as by the properties of the fiber 

and matrix materials. 

Consider a typical region of material of unit dimensions, containing a 

volume fraction, 𝑉𝑓 of fibers all oriented in a single direction. The matrix 

volume fraction is then, 𝑉𝑚 = 1 − 𝑉𝑓. This region can be idealized by 

gathering all the fibers together, leaving the matrix to occupy the remaining 

volume. If a stress 𝜎𝑙 is applied along the fiber direction, the fiber and matrix 

phases act in parallel to support the load. In these parallel connections the 

strains in each phase must be the same, so the strain 𝜀𝑙 in the fiber direction can 

be written as: 

𝜀𝑙 =  𝜀𝑓 =  𝜀𝑚                                                     (1) 

Where the subscripts l, f and m denote the lamina, fibers and matrix 

respectively. 

The forces in each phase must add to balance the total load on the material. 

Since the forces in each phase are the phase stresses times the area (here 

numerically equal to the volume fraction), we have  

𝜎𝑙 = 𝜎𝑓𝑉𝑓 + 𝜎𝑚𝑉𝑚 = 𝐸𝑓𝜀𝑙𝑉𝑓 + 𝐸𝑚𝜀𝑙𝑉𝑚                             (2) 

The stiffness in the fiber direction is found by dividing the strain: 

𝐸𝑙 =
𝜎𝑙

𝜀𝑙
= 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚                                          (3) 

(Where E is the longitudinal Young's modulus)  

This relation is known as a rule of mixtures prediction of the overall 

modulus in terms of the moduli of the constituent phases and their volume 

fractions. 

Rule of mixtures estimates for strength proceed along lines similar to those 

for stiffness. For instance, consider a unidirectional reinforced composite that is 

strained up to the value at which the fiber begins to fracture. If the matrix is 

more ductile than the fibers, then the ultimate tensile strength of the lamina in 

equation (2) will be transformed to: 

𝜎𝑙
𝑢 = 𝜎𝑓

𝑢𝑉𝑓 + 𝜎𝑚
𝑓

(1 − 𝑉𝑓)                                        (4) 

Where the superscript u denotes an ultimate value, and 𝜎𝑚
𝑓

 is the matrix stress 

when the fibers fracture as shown in Figure 2. 
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Figure 2.  Stress-strain relationships for fiber and matrix 

 

It is clear that if the fiber volume fraction is very small, the behavior of the 

lamina is controlled by the matrix.  

This can be expressed mathematically as follows: 

𝜎𝑙
𝑢 = 𝜎𝑚

𝑢 (1 −  𝑉𝑓)                                                 (5) 

If the lamina is assumed to be useful in practical applications, then there is a 

minimum fiber volume fraction that must be added to the matrix. This value is 

obtained by equating equations (4) and (5) i.e. 

𝑉𝑚𝑖𝑛 =
𝜎𝑚

𝑢 − 𝜎𝑚
𝑓

𝜎𝑓
𝑢 + 𝜎𝑚

𝑢 − 𝜎𝑚
𝑓

                                            (6) 

The variation of the strength of the lamina with the fiber volume fraction is 

illustrated in Figure 3.  
 

 
Figure 3. Variation of unidirectional lamina strength with the fiber volume fraction 
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It is obvious that when   0 < 𝑉𝑓 <  𝑉𝑚𝑖𝑛 the strength of the lamina is dominated 

by the matrix deformation which is less than the matrix strength. But when the 

fiber volume fraction exceeds a critical value (i.e.𝑉𝑓 >  𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙), Then the 

lamina gains some strength due to the fiber reinforcement. 

The micromechanical approach is not responsible for the many defects 

which may arise in fibers, matrix, or lamina due to their manufacturing. These 

defects, if they exist include misalignment of fibers, cracks in matrix, non-

uniform distribution of the fibers in the matrix, voids in fibers and matrix, 

delaminated regions, and initial stresses in the lamina as a result of its 

manufacture and further treatment.   

The above mentioned defects tend to propagate as the lamina is loaded 

causing an accelerated rate of failure. The experimental and theoretical results 

in this case tend to differ. Hence, due to the limitations necessary in the 

idealization of the lamina components, the properties estimated on the basis of 

micromechanics should be proved experimentally. The proof includes a very 

simple physical test in which the lamina is considered homogeneous and 

orthotropic. In this test, the ultimate strength and modulus of elasticity in a 

direction parallel to the fiber direction can be determined experimentally by 

loading the lamina longitudinally. When the test results are plotted, as in Figure 

4 below, the required properties may be evaluated as follows:  

1212111 /    ;    /   ;   /   −=== APE uu

 
 

 
Figure 4.  Unidirectional lamina loaded in the fiber-direction 

 

Similarly, the properties of the lamina in a direction perpendicular to the fiber-

direction can be evaluated in the same procedure. 
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2.2  Αnalytical modeling of composite laminates 
The properties of a composite laminate depend on the geometrical arrangement 

and the properties of its constituents. The exact analysis of such structure – 

property relationship is rather complex because of many variables involved. 

Therefore, a few simplifying assumptions regarding the structural details and 

the state of stress within the composite have been introduced. 

 It has been observed, that the concept of representative volume element and 

the selection of appropriate boundary conditions are very important in the 

discussion of micromechanics. The composite stress and strain are defined as 

the volume averages of the stress and strain fields, respectively, within the 

representative volume element. By finding relations between the composite 

stresses and the composite strains in terms of the constituent properties 

expressions for the composite moduli could be derived. In addition, it has been 

shown that, the results of advanced methods can be put in a form similar to the 

rule of mixtures equations. 

Prediction of composite strengths is rather difficult because there are many 

unknown variables and also because failure critically depends on defects. 

However, the effects of constituents including fiber – matrix interface on 

composite strengths can be qualitatively explained. Certainly, failure modes can 

change depending on the material combinations.  Thus, an analytical model 

developed for one material combination cannot be expected to work for a 

different one. Ideally a truly analytical model will be applicable to material 

combination. However, such an analytical model is not available at present.  

Therefore, it has been chosen to provide models each of which is applicable 

only to a known failure mode. Yet, they can explain many of the effects of the 

constituents. (Refer to Ref. [9]). 

 

3  DEVELOPMENTS IN THE THEORIES OF LAMINATED PLATES  
From the point of view of solid mechanics, the deformation of a plate subjected 

to transverse loading consists of two components: flexural deformation due to 

rotation of cross-sections, and shear deformation due to sliding of sections or 

layers. The resulting deformation depends on two parameters: the thickness to 

length ratio and the ratio of elastic to shear moduli. When the thickness to 

length ratio is small, the plate is considered thin, and it deforms mainly by 

flexure or bending; whereas when the thickness to length and the modular ratios 

are both large, the plate deforms mainly through shear. Due to the high ratio of 

in-plane modulus to transverse shear modulus, the shear deformation effects are 

more pronounced in the composite laminates subjected to transverse loads than 

in the isotropic plates under similar loading conditions. 

The three-dimensional theories of laminates in which each layer is treated as 

homogeneous anisotropic medium (see Reddy [10]) are intractable as the 

number of layers becomes moderately large. Thus, a simple two-dimensional 
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theory of plates that accurately describes the global behavior of laminated plates 

seems to be a compromise between accuracy and ease of analysis. 

 

 

 

 

 
Figure 5. Assumed deformation of the transverse normal in various displacement base plate 

theories 

 

Putcha and Reddy [11] classified the two-dimensional analyses of laminated 

composite plates into two categories: (1) the classical lamination theory, and (2) 

shear deformation theories. In both theories it is assumed that the laminate is in 

a state of plane stress, the individual lamina is linearly elastic, and there is 

perfect bonding between layers. The classical laminate theory (CLPT), which is 

an extension of the classical plate theory (CPT) applied to laminated plates was 

the first theory formulated for the analysis of laminated plates by Reissner and 

Stavsky [12] in 1961, in which the Kirchhoff-Love assumption that normal to 

the mid-surface before deformation remain straight and normal to the mid-

surface after deformation is used (see Figure 5), but it is not adequate for the 
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flexural analysis of moderately thick laminates. However, it gives reasonably 

accurate results for many engineering problems i.e. thin composite plates, as 

stated by Srinivas and Rao [13] and Reissner and Stavsky [12].  

This theory ignores the transverse shear stress components and models a 

laminate as an equivalent single layer. The classical laminated plate theory 

(CLPT) under-predicts deflections as proved by Turvey and Mahmoud Yassin 

Osman [4], [5], and [6] and Reddy [9] due to the neglect of transverse shear 

strain. The errors in deflections are even higher for plates made of advanced  

filamentary composite materials like graphite -epoxy and boron-epoxy, whose 

elastic modulus to shear modulus ratios are  very large (i.e. of the order of 25 to 

40, instead of 2.6 for typical isotropic materials). However, these composites 

are susceptible to thickness effects because their effective transverse shear 

moduli are significantly smaller than the effective elastic modulus along the 

fiber direction. This effect has been confirmed by Pagano [14] who obtained 

analytical solutions of laminated plates in bending based on the three-

dimensional theory of elasticity. He proved that classical laminated plate theory 

(CLPT) becomes of less accuracy as the side to thickness ratio decreases. In 

particular, the deflection of a plate predicted by CLPT is considerably smaller 

than the analytical value for side to thickness ratio less than 10. These high 

ratios of elastic modulus to shear modulus render classical laminate theory as 

inadequate for the analysis of composite plates. 

Many theories which account for the transverse shear and normal stresses are 

available in the literature (see, for example Mindlin [15]). These are too 

numerous to review here. Only some classical papers and those which constitute 

a background for the present research article will be considered. These theories 

are classified according to Phan and Reddy [16] into two major classes on the 

basis of the assumed fields as: (1) stress based theories, and (2) displacement 

based theories. The stress-based theories are derived from stress fields, which 

are assumed to vary linearly over the thickness of the plate: 

𝜎𝑖 =
𝑀𝑖

(ℎ2/6)
×

𝑧

(ℎ/2)
      (𝑖 = 1,2,6)                                 (7) 

(Where Mi   is the stress couples, h is the plate thickness, and z is the distance of 

the lamina from the plate mid-plane) 

The displacement-based theories are derived from an assumed displacement 

field as: 

𝑢 = 𝑢0 + 𝑧𝑢1 + 𝑧2𝑢2 + 𝑧3𝑢3 + ⋯ 

𝑣 = 𝑣0 + 𝑧𝑣1 + 𝑧2𝑣2 + 𝑧3𝑣3 + ⋯                                   (8) 

𝑤 = 𝑤0 + 𝑧𝑤1 + 𝑧2𝑤2 + 𝑧3𝑤3 + ⋯ 

Where, 𝑢0, 𝑣0 and 𝑤0 are the displacements of the middle plane of the plate. 

The governing equations are derived using the principle of minimum total 

potential energy. The theory used in the present work comes under the class of 



 60                                                        Introduction to composite decks fibrous laminates  

 

displacement-based theories. Extensions of these theories which include the 

linear terms in z in u and v and only the constant term in w, to account for 

higher -order variations and to laminated plates, can be found in the work of 

Yang, Norris and Stavsky [17], Whitney and Pagano [18] and Phan and Reddy 

[16]. In this theory which is called first-order shear deformation theory (FSDT), 

the transverse planes, which are originally normal and straight to the mid-plane 

of the plate, are assumed to remain straight but not necessarily normal after 

deformation, and consequently shear correction factor are employed in this 

theory to adjust the transverse shear stress, which is constant through thickness 

(see Figure 5). Recently Reddy [10] and Phan and Reddy [16] presented refined 

plate theories that use the idea of expanding displacements in the powers of 

thickness co-ordinate. The main novelty of these works is to expand the in-

plane displacements as cubic functions of the thickness co-ordinate, treat the 

transverse deflection as a function of the x and y co-ordinates, and eliminate the 

functions u2 ,u3 ,v2 and v3 from equation (8) by requiring that the transverse 

shear stresses be zero on the bounding planes of the plate. Numerous studies 

involving the application of the first-order theory to bending analysis can be 

found in the works of Reddy [19], and Reddy and Chao [20]. 

In order to include the curvature of the normal after deformation, a number 

of theories known as Higher-order Shear Deformation Theories (HSDT) have 

been devised in which the displacements are assumed quadratic or cubic 

through the thickness of the plate. In this aspect, a variationally consistent 

higher-order theory which not only accounts for the transverse shear 

deformation but also satisfies the zero transverse shear stress conditions on the 

top and bottom faces of the plate and does not require shear correction factors 

was suggested by Reddy [10]. Reddy's modifications consist of a more 

systematic derivation of displacement field and variationally consistent 

derivation of the equilibrium equations. The refined laminate plate theory 

predicts a parabolic distribution of the transverse shear stresses through the 

thickness, and requires no shear correction coefficients. 

In the non-linear analysis of plates considering higher-order theory (HSDT), 

shear deformation has received considerably less attention compared with linear 

analysis. This is due to the geometric non-linearity which arises from finite 

deformations of an elastic body and which causes more complications in the 

analysis of composite plates. Therefore fiber-reinforced material properties and 

lamination geometry have to be taken into account. In the case of anti-

symmetric and unsymmetrical laminates, the existence of coupling between 

bending and stretching complicates the problem further.  

Non-linear solutions of laminated plates using higher-order theories have 

been obtained through several techniques, i.e. perturbation method as in Ref. 

[21], finite element method as in Putcha and Reddy [10], the increment of 

lateral displacement method as in Ref. [22], and the small parameter method as 

in Ref. [23]. 
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In the present work, a numerical method known as Dynamic Relaxation (DR) 

coupled with finite differences is used. The DR method was first proposed in 

1960s; see Rushton [24], Cassell and Hobbs [25], Day [26]. In this method, the 

equations of equilibrium are converted to dynamic equation by adding damping 

and inertia terms. These are then expressed in finite difference form and the 

solution is obtained through iterations. The optimum damping coefficient and 

time increment used to stabilize the solution depend on a number of factors 

including the stiffness matrix of the structure, the applied load, the boundary 

conditions and the size of the mesh used, etc… 

Numerical techniques other than the DR include finite element method, 

which is widely used in the literature. In a comparison between the DR and the 

finite element method, Aalami [27] found that the computer time required for 

finite element method is eight times greater than for DR analysis, whereas the 

storage capacity for finite element analysis is ten times or more than that for DR 

analysis. This fact is supported by Putcha and Reddy [11] who noted that some 

of the finite element formulations require large storage capacity and computer 

time. Hence, due to less computations and computer time involved in the 

present study, the DR method is considered more efficient than the finite 

element method. In another comparison Aalami [27] found that the difference in 

accuracy between one version of finite element and another may reach a value 

of 10% or more, whereas a comparison between one version of finite element 

method and DR showed a difference of more than 15%. Therefore, the DR 

method can be considered of acceptable accuracy. The only apparent limitation 

of DR method is that it can only be applied to limited geometries. However, this 

limitation is irrelevant to rectangular plates which are widely used in 

engineering applications. 

 

4   CONCLUSIONS 
Composites possess two desirable features, the first one is their high strength to 

weight ratio, and the second is their properties that can be tailored through 

variation of the fiber orientation and stacking sequence which gives the 

designers a wide spectrum of flexibility. For these reasons, composites are 

continuing to replace other materials used in structures such as classical 

materials. 

Composite materials have many mechanical characteristics, which are 

different from those of conventional engineering materials such as metals. More 

precisely, composite materials are often both inhomogeneous and non-isotropic. 

Therefore, and due to the inherent heterogeneous nature of composite materials, 

they can be studied from a micromechanical or a macro-mechanical point of 

view. The micromechanics approach is more convenient for the analysis of the 

composite material because it studies the volumetric percentages of the 

constituent materials for the desired lamina stiffnesses and strengths. 
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The deformation of a deck plate subjected to transverse loading is caused either 

by flexural deformation due to rotation of cross-sections, or shear deformation 

due to sliding of sections or layers. 

 Solutions of laminated deck plates using different-order theories could be 

obtained through several techniques, i.e. dynamic relaxation method, finite 

differences method, perturbation method, finite element method, the increment 

of lateral displacement method, and the small parameter method. 
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