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ABSTRACT: From the point of view of mechanics of engineering materials, 

the deformation of a plate subjected to transverse loading consists of two 

components: flexural deformation due to rotation of cross-sections, and shear 

deformation due to sliding of sections or layers. The resulting deformation 

depends on two parameters: the thickness to length ratio and the ratio of elastic 

to shear moduli. When the thickness to length ratio is small, the plate is 

considered thin, and it deforms mainly by flexure or bending; whereas when the 

thickness to length and the modular ratios are both large, the plate deforms 

mainly through shear. Due to the high ratio of in-plane modulus to transverse 

shear modulus, the shear deformation effects are more pronounced in the 

composite laminates subjected to transverse loads than in the isotropic plates 

under similar loading conditions. 

Mathematical models for rectangular laminated plates in bending need to 

determine the real stress‐strain state in the laminated plate, which requires the 

application of more accurate theories. In addition, it is important to find a 

balance between the desired accuracy and calculation costs. 

Different theories for rectangular plate analysis have been reviewed. These 

theories can be divided into two major categories, the individual layer theories 

(IL), and the equivalent single layer (ESL) theories. These categories are further 

divided into sub – theories by the introduction of different assumptions.  
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Modeling, Theories of plates, Numerical methods 

 

1  INTRODUCTION 
Composite structures which are made of layers of two or more materials are 

called laminated composite plates. Layers are the basic elements of laminated 

composite plates and they are made of fibers impregnated in suitable matrix 

materials. The fibers are load bearing elements of the layer, while the matrix 

protects the fibers from external effects, holds the fibers together and performs 

uniform distribution of the influences to each of the fibers. The materials used 

for fibers have better properties and greater capacity compared to the matrix, 
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and the geometrical characteristics of the fiber cross section are significantly 

smaller than its length. Materials used for fibers can be Aluminium, copper, 

iron, nickel, steel, titanium, or organic materials such as glass, carbon, and 

graphite. A layer with unidirectional fibers has significantly better 

characteristics in fiber direction than in a direction perpendicular to the fiber. 

Heterogeneity of anisotropic laminated composite plates often causes the 

appearance of a large number of imperfections that can occur in laminated 

composite plates. General deformation of laminated plates is often defined by 

complex coupling between the axial deformation, bending, and shear 

deformation. In laminated composite plates for smaller aspect ratio, the 

importance of shear deformation is higher than in the corresponding 

homogeneous isotropic plates. 

Mathematical models for these particular problems need to determine the 

real stress‐strain state in the laminated plate, which requires the application of 

more accurate theories. In addition, it is important to find a balance between the 

desired accuracy and calculation costs. 

Based on different assumptions for displacement fields, different theories for 

plate analysis have been devised. These theories can be divided into two major 

categories, the individual layer theories (IL), the equivalent single layer (ESL) 

theories as mentioned in Marina Rakočević [1], Osama Khayal [2], [3] and [4]. 

These categories are further divided into sub – theories by the introduction of 

different assumptions. For example, the second category includes the classical 

laminated plate theory (CLPT), the first order and higher order shear 

deformation theories (FSDT and HSDT) as stated in Refs. {[5] – [8]}. 

In the individual layer laminate theories, each layer is considered as a 

separate plate. Since the displacement fields and equilibrium equations are 

written for each layer, adjacent layers must be matched at each interface by 

selecting appropriate interfacial conditions for displacements and stresses. In 

the ESL laminate theories, the stress or the displacement field is expressed as a 

linear combination of unknown functions and the coordinate along the 

thickness. If the in – plane displacements are expanded in terms of the thickness 

co – ordinate up to the nth power, the theory is named nth order shear 

deformation theory. The simplest ESL laminate theory is the classical laminated 

plate theory (CLPT). This theory is applicable to homogeneous thin plates (i.e. 

the length to thickness ratio a / h > 20). The classical laminated plate theory 

(CLPT), which is an extension of the classical plate theory (CPT) applied to 

laminated plates was the first theory formulated for the analysis of laminated 

plates by Reissner and Stavsky [9] in 1961, in which the Kirchhoff and Love 

assumption that normal to the mid – surface before deformation remain straight 

and normal to the mid – surface after deformation is used, but it is not adequate 

for the flexural analysis of moderately thick laminates. However, it gives 

reasonably accurate results for many engineering problems i.e. thin composite 

plates, as stated by Srinivas and Rao [10], Reissner and Stavsky [9]. This theory 
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ignores the transverse shear stress components and models a laminate as an 

equivalent single layer. The classical laminated plate theory (CLPT) under – 

predicts deflections as proved by Turvey and Osman [11], [12], [13] and Reddy 

[6] due to the neglect of transverse shear strain. The errors in deflection are 

even higher for plates made of advanced filamentary composite materials like 

graphite – epoxy and boron – epoxy whose elastic modulus to shear modulus 

ratios are very large (i.e. of the order of 25 to 40, instead of 2.6 for typical 

isotropic materials). However, these composites are susceptible to thickness 

effects because their effective transverse shear moduli are significantly smaller 

than the effective elastic modulus along the fiber direction. This effect has been 

confirmed by Pagano [14] who obtained analytical solutions of laminated plates 

in bending based on the three – dimensional theory of elasticity. He proved that 

classical laminated plate theory (CLPT) becomes of less accuracy as the side to 

thickness ratio decreases. In particular, the deflection of a plate predicted by 

CLPT is considerably smaller than the analytical value for side to thickness 

ratio less than 10. These high ratios of elastic modulus to shear modulus render 

classical laminate theory as inadequate for the analysis of composite plates. In 

the first order shear deformation theory (FSDT), the transverse planes, which 

are originally normal and straight to the mid – plane of the plate, are assumed to 

remain straight but not necessarily normal after deformation, and consequently 

shear correction factors are employed in this theory to adjust the transverse 

shear stress, which is constant through thickness.  Recently Reddy [15] and 

Phan and Reddy [16] presented refined plate theories that used the idea of 

expanding displacements in the powers of thickness coordinate. Numerous 

studies involving the application of the first – order theory to bending, vibration 

and buckling analyses can be found in the works of Reddy [17], and Reddy and 

Chao [18].  

In order to include the curvature of the normal after deformation, a number 

of theories known as higher – order shear deformation theories (HSDT) have 

been devised in which the displacements are assumed quadratic or cubic 

through the thickness of the plate. In this aspect, a variationally consistent 

higher – order theory which not only accounts for the shear deformation but 

also satisfies the zero transverse shear stress conditions on the top and bottom 

faces of the plate and does not require correction factors was suggested by 

Reddy [15]. Reddy's modifications consist of a more systematic derivation of 

displacement field and variationally consistent derivation of the equilibrium 

equations. The refined laminate plate theory predicts a parabolic distribution of 

the transverse shear stresses through the thickness, and requires no shear 

correction coefficients. 

There are two main theories of laminated plates depending on the magnitude 

of deformation resulting from loading a plate and these are known as the linear 

and nonlinear theories of plates. The difference between the two theories is that 

the deformations are small in the linear theory, whereas they are finite or large 
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in the nonlinear theory.  

 

2   LINEAR THEORY OF RECTANGULAR LAMINATED PLATES 

2.1  Assumptions  
1- The plate shown in Figure 1 is constructed of an arbitrary number of 

orthotropic layers bonded together as in Figure 2.  However, the orthotropic 

axes of material symmetry of an individual layer need not coincide with the 

axes of the plate. 

2- The displacements u, v and w are small compared to the plate thickness. 

3- In-plane displacements u and v are linear functions of the z-coordinate. 

4- Each ply obeys Hook’s law. 

5- The plate is flat and has constant thickness. 

6- There are no body forces such as gravity force. 

7- The transverse normal stress is small compared with the other stresses and is 

therefore neglected. 

 

 
Figure 1.  A plate showing dimensions and deformations 

 

 
Figure 2.  Geometry of an n -layered laminate 
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2.2   Equations of equilibrium 
The stresses within a body vary from point to point. The equations governing 

the distribution of the stresses are known as the equations of equilibrium. 

Consider the static equilibrium state of an infinitesimal parallel piped with 

surfaces parallel to the co-ordinate planes. The resultants stresses acting on the 

various surfaces are shown in Figure 3. Equilibrium of the body requires the 

vanishing of the resultant forces and moments. 

 

 
Figure 3.  Stresses acting on an infinitesimal element 
 

Where the dash indicates a small increment of stress e.g.   dx
x
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The forces in the direction of x are shown in Figure 4. The sum of these forces 

gives the following equation.  
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Figure 4.  Stresses acting in the x–direction 

 

In order to facilitate the analysis of a multi-layered plate as a single layer plate, 

stress resultants and stress couples are introduced and defined as follows: 
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Where zk
 and zk+1 are the distances of top and bottom surfaces of the kth ply from 

the middle plane of the plate as shown in Figure 2. The stress resultants and 

stress couples are clearly shown in Figure 5 and 6 respectively. 

 

 
Figure 5.  Nomenclature for stress resultants 
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When integrating equation (1) term by term across each ply, and summing over 

the plate thickness, it will be converted to: 
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In order to introduce the stress resultants given in equation (4), summation can 

be interchanged with differentiation in the first two terms. 

 

 
Figure 6.  Nomenclature for stress couples 
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The first and second bracketed terms, according to equation (4), are N1 and N6 

receptively. The last term must vanish because between all plies the inter-

laminar shear stresses cancel each other out, and the top and bottom surfaces of 

the plate are assumed shear stress free. 

The first integrated equation of equilibrium can then be written in the 

following form: 

                                            061 =

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+





y

N

x

N
                              (6)  

Similarly equations (2) and (3) can be integrated to give: 

𝜕𝑁6

𝜕𝑥
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= 0                                                   (7) 
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+ q = 0                                                 (8) 
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The equations of moment equilibrium can be obtained by multiplying equation 

(1) by z and integrating with respect to z over plate thickness which yields the 

following equation: 
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When integration and summation are interchanged with differentiation and the 

stress couples given in equation (4) are introduced, the first two terms become   
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The first term on the right hand side of the above equation represents the 

moments of all inter-lamina stresses between plies which again must cancel 

each other out. The last term, according to equation (5), is – Q1. Hence the 

integrated moment equilibrium equation is: 

𝜕𝑀1

𝜕𝑥
 +

𝜕𝑀6

𝜕𝑦
− 𝑄1 = 0                                             (9) 

When equation (2) is treated similarly, it yields the following equation: 

𝜕𝑀6

𝜕𝑥
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𝜕𝑀2

𝜕𝑦
−  𝑄2 = 0                                          (10) 

Hence, the equilibrium equations of the plate are the five equations, i.e. 

equations (6) to (10). 

 

2.3   Τhe strain-displacement equations 
Figure 7 shows a small element ABCD in the Cartesian co-ordinates x, y which 

deforms to DCBA  . The deformations can be described in terms of 

extensions of lines and distortion of angles between lines. From Figure 7, it is 

possible to write expressions for linear and shear strains as follows: 
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If θ is very small, then, 

x
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For a three-dimensional problem, the following strains may be added: 
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Figure 7.  Small element ABCD in the artesian co-ordinates x, y 

 

The displacements, which comply with assumption (3), are:  
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Where uo ,vo ,and wo are the displacements of the middle surface of the plate. 

When equation (17) is differentiated and substituted in Equations (11 –16), the 

following strain displacement relations are obtained. 
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2.4  Τhe constitutive equations 
The constitutive equations of an individual lamina, k, are of the form:  
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Then, equation (19) becomes:- 
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Equation (21) can be written in the form: 
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Similarly using equation (20) in equation (4) gives:   
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Equation (23) can be written in the form: 
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Where Aij, Bij, and Dij, (i, j=1, 2, 3) are respectively the membrane rigidities, 

coupling rigidities and flexural rigidities of the plate. The rigidities Bij display 

coupling between transverse bending and in-plane stretching. The coupling will 

disappear when the reference plane is taken as the plate mid-plane for 

symmetric laminate .The rigidities are calculated as follows: 
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Hence, the laminate constitutive equations can be represented in the form: 
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Where Aij (i, j =4, 5) denote the stiffness coefficients, and are calculated as 

follows: 
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Where Ki ,Kj are the shear correction factors. 

 

2.5  Boundary conditions 
The proper boundary conditions are those which are sufficient to guarantee a 

unique solution of the governing equations. To achieve that goal, one term of 

each of the following five pairs must be prescribed along the boundary. 

    w   or   Q ;      or    M;     or    M; u   or   N ; u    or   N ssnnsns  nn          (29) 
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Where the subscripts n and s indicate the normal and tangential directions 

respectively. The boundary conditions used in this thesis are given in Appendix 

C. 

 

3    NONLINEAR THEORY OF RECTANGULAR LAMINATED 

PLATES 

3.1   Assumptions 
The assumptions made in the nonlinear theory of laminated plates are the same 

as those listed for linear analysis, section 2.1, except for assumption (2), which 

is concerned with the magnitude of deformations. In the nonlinear theory, in-

plane displacements are again small compared to the thickness of the plate, but 

the out-of-plane displacement is not.  

 

3.2  Equations of equilibrium 
The derivation of the equilibrium equations for finite deformations could be 

found in references [3], [6], [7] and [8] and which could be written in the 

following form: 
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The equilibrium equations of a body undergoing large deformations are given in 

equations (30) – (32). Assuming that the in-plane displacement gradients are 

small compared to unity and neglecting the transverse normal stress 3 , 

equations (30) __ (32) can be written in a simpler form as follows: 

   
zyx

0561 =



+




+



 
                                   (33) 

  
zyx
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


+




+



 
                                    (34) 
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Integrating equations (33) and (34) over the thickness of the plate as in section 

2.2 gives equations (6) and (7) as before. When equation (35) is integrated, it 

gives: 
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This can be rewritten in the following form: 
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where:   







−








−=

2

h
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h
q 33   

However, similar to equations (6) and (7), the last two terms in equation (37) 

must be zero, and so the above equation reduces to: 

           02 21
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Multiplying equations (33) and (34) by z and again integrating over the 

thickness of the plate to obtain equations (9) and (10). 

Hence, the governing equations of the plate are the following five equations 

(6), (7), (38), (9), and (10). It should be noted that the shear deformation theory 

derived above reduces to classical laminated theory when the transverse shear 

strains are eliminated by setting: 

y

w
   and    ,

x

w




−=




−=   

 

3.3   The strain-displacement equations 
 The in-plane displacements u and v are small, whereas the deflection w is of the 

order of half the plate thickness or more. This assumption implies that:  

                                   
( )
( ) ( )y,x

w

y,x

v,u




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


                                         (39) 

Consequently, the expressions for finite strains can be simplified as follows: 
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The in-plane displacements are again assumed to vary linearly through the 

thickness of the plate as described for linear analysis i.e.:-  
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                                 (41)  

When these displacements are substituted into equation (40), the following 

relations are obtained: 
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where:             
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3.4  The constitutive equations 
These are the same as equations (26), and (27) of section 2.4.  

 

3.5  Boundary conditions 
 These are the same as equation (29) of section 2.5.  

 

4     TRANSFORMATION EQUATIONS 

4.1   Stress-strain equations 
For linear elastic materials, the relation between the stress and strain is as 

follows: 

                          1,2,...,6) j(i, ==       C jiji                            (44) 

Where the first subscript i refers to the direction of the normal to the face on 

which the stress component acts, and the second subscript j corresponds to the 

direction of the stress. 
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When an orthotropic body is in a state of plane stress, the non-zero components 

of the stiffness tensors C/
ij are: 

2112

1
11

1 −
=

E
C  

2112

212

2112

121
12

11 







−
=

−
=

EE
C  

2112

2
22

1 −
=

E
C  

126613552344     ,     , GCGCGC ===                          (45) 

Where E1 and E2 are Young's moduli in directions 1 and 2 respectively. 
ij  Is 

Poisson's ratio of transverse strain in the j-direction when stressed in the i-

direction (i.e.,  
ijij /  −=  When  =i   and all other stresses are zero). 

 

4.2  Transformation of stresses and strains 
Consider a co-ordinate system rotated anticlockwise through an angle θ, the 

rotated axes are denoted by 1/, 2/ as in Figure 8 below. Consider the equilibrium 

of the small element ABC shown. Resolving forces parallel to 1/ axis gives: 

       sindycosdxsindxcosdyds 1212221111 +++=        (46) 

On rearranging, the expression reduces to: 

           sindycossinsincos 1212

2

22

2

1111 2 +++=        (47) 

Resolving forces parallel to 2/ axis gives: 

             sindxcosdycosdxsindyds 1212221112 −++−=       (48) 

This can then be written in the form: 

       ( ) 22

12221112 sincoscossincossin −++−=       (49) 
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Figure 8.  Stresses on a triangular element 

 

The same procedure is applied to obtain the other transformed stresses which 

may be written in a matrix form as: 

    ii M  =                                            (50) 
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The strains are transformed similarly: 

    
ji N  =                                            (51) 
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4.3   Τransformation of the elastic moduli  
In general the principle material axes (1/, 2/, 3/) are not aligned with the 

geometric axes (1, 2, 3) as shown in Figure 9 for a unidirectional continuous 

fiber composite. It is necessary to be able to relate the stresses and strains in 

both co-ordinate systems. This is achieved by multiplying equation (50) by 

  1−
M  i.e.: 

 
Figure 9.  A generally orthotropic plate 

 

     ii M  =
−1

                                          (52) 

Substitute equation (44) in equation (52) to obtain: 

                
jiji CM  =

−1
                                       (53)   

Then, substitute Eqn. (2.51) in Eqn. (2.53) 

       
jiji NCM    

1
=

−
                                    (54)   

This equation can be written as: 

     
jiji C    =                                              (55)   

Where                                        ijij CNMC =
−

  
1

 

Equation (55) gives the constitutive equation for a generally orthotropic lamina 

in which the material axes and geometric axes are not aligned. The constants Cij 

are as follows: 
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Where m=cos θ  and  n=sin θ 

 

5   CONCLUSIONS   

There are two main theories of laminated plates depending on the magnitude of 

deformation resulting from loading a plate and these are known as the linear and 

nonlinear theories (i.e. small and large deformation theories) of plates. The 

difference between the two theories is that the deformations are small in the 

linear theory, whereas they are finite or large in the nonlinear theory. 

Mathematical models for these particular problems need to determine the 

displacement equations and consequently the real stress - strain state in the 

laminated plate, which requires the application of more accurate theories. In 

addition, it is important to find a balance between the desired accuracy and 

calculation costs. 

Based on different assumptions for displacement fields, different theories for 

plate analysis have been reviewed. These theories can be divided into two major 

categories, the individual layer theories (IL), and the equivalent single layer 

(ESL) theories. These categories are further divided into sub – theories by the 

introduction of different assumptions. For example, the second category 

includes the classical laminated plate theory (CLPT), the first order and higher 

order shear deformation theories (FSDT and HSDT).  
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