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ABSTRACT: This paper adopted a four-node degenerated shell element. A 

reduced integration point's scheme has been used as a remedy for the shear lock 

problem. The element was subjected to the patch test and passed all tests except 

the pure bending test. Different shell thicknesses have been adopted to find 

different ratios between thicknesses and the lengths of the elements for each 

mesh size. Some numerical examples have been applied, including curved and 

flat shells. Accordingly, different plots have been obtained by plotting the 

maximum displacements versus the ratios between the thicknesses and the 

lengths obtained of the elements for the different mesh sizes. The plots showed 

that the solution diverged after a certain value of the ratio which has been found 

equal to 0.23 for the curved shell and equal to 0.9 for the flat plate shell. These 

values were verified by using examples of known exact maximum 

displacement. 
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1   GENERAL INTRODUCTION 
The general concept of the finite element method is that the solution gained by 

it converges towards to the correct solution with increasing the mesh density. 

This concept is mostly, but not always, correct. Due to the assumptions 

accompanying the formulation of the method sometimes solution problems 

arise, especially in the application to thin shell elements, in which the problems 

of shear locking and membrane locking are encountered. 

These problems often lead to the solution divergence. Although many 

solutions to these problems have been proposed and have been included in a 

large number of publications and have contributed to the solution of the 

problems in multiple applications, these problems still prevail in some different 

shell elements. Such special solutions were originally adopted in the linear case 
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by Ahmad et al. [l], Zienkiewicz et al [2], Hughes and Cohen [3] and had been 

subsequently used by many investigators. Other methods called Enhanced 

Assumed Strain (EAS) and Assumed Natural Strain (ANS) were also used to 

eliminate locking for the rectangular element, [4, and 5]. A technique of 

reduced and selective integration was also used which modifies the Gauss 

integration by combining both selective and weight modified integration [6, and 

7]. A most effective method used to alleviate the shear locking is the Mixed 

Interpolation of Tensorial Components (MITC) method suggested by Dvorkin 

and Bathe [8] and lately modified to a new (MITC4+) shell element using a new 

assumed membrane strain field [9]. A solution had, also, been adopted by 

correcting the convergence curve to be asymptotic to the exact solution line by 

extrapolating the displacement using a Weibull model [7]. 

 

1.1  Aims and objective 

This paper aims to solve the problem of shell finite element solution 

accompanied with the shear and membrane locking by presenting a linear 

formulation based on the four nodes degenerated shell finite element. 

 

2   DEFINITION OF THE ELEMENT GEOMETRY 
The four nodes degenerated shell finite element was presented by Kanock-

Nukulchai [10]. The four nodes element shown in Figure 1 is obtained by 

degenerating the eight nodes solid element. 

 

 
Figure 1.  Degenerate four nodes shell element from eight nodes solid element 

 

The shaded midsurface shown in Figure 1 is defined by natural coordinates (r, s, 

t). The displacements u, v and w are the displacements in global Cartesian 

coordinates x, y and z respectively. The rotations αx and αy are about local 

coordinates x' and y' respectively.  

The shape functions for element at nodes are given by: 

Ni (r, s) = ¼ (1 + ri r) (1 + si s)                                    (1) 
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The thickness at node i, hi is computed normal to the midsurface, where i refers 

to the node number (i = 1 – 4). 

The shell displacements field consists of the nodal displacements at 

midsurface ui, vi and wi in global Cartesian coordinates x, y and z respectively in 

addition to the relative displacements produced by rotations αxi and αyi which 

are about local coordinates x' and y' respectively, as indicated in Figure 1. So, 

the general displacement variation can be expressed by: 

 
 
 
 
      

  
  
  

 

 

   

        

 

   

 
   
   

   

 
    
   

    

  
    
   

                    

where l1, m1 and n1 (the direction cosines) are components of unit vector v1, and 

l2, m2 and n2 are components of unit vector v2 , where v1 and v2 are tangents to 

midsurface and are perpendicular to each other.  

 

3    STRESSES AND STRAINS 
The strains components along the local axes are given by Equation (3), 

assuming that the strain normal to midsurface εz' = 0. 

By splitting Equation (3) into membrane component and shear component it 

can be rewritten as shown in Equations (4) and (5). 

Hence, the matrices Bm, Bs can be derived by using Equation (6), where T is 

the transformation matrix. 
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Assuming σz' = 0, the stress-strain relation can be stated as: 

 

   
   
     

     

   
   
     

                                                    

 
     
     

     
     
     

                                                     

Where Cm and Cs are the constitutive matrices for the membrane component and 

shear component respectively which are given as: 

   
 

    
 

   
   

  
   

 

      
  

      
 
  
  

                        

Where  = 5/6 is a factor that accounts for the thickness-direction variation of 

transverse shear strain, E is the modulus of elasticity and  is Poisson's ratio. 

 

3.1  The element stiffness matrix 
The stiffness matrix can be split into two matrices, membrane and bending 

effects and transverse shear effects and can be written as: 

      
 

 

  

                                                        

      
 

 

  

                                                            

Where J is the Jacobian matrix. 

Finite element computer programs were developed to include the theory 

presented previously. The programs were coded in standard Compaq Visual 

FORTRAN Professional Edition 6.5.0. 

The element was tested to evaluate its reliability and performance in 

different mesh configurations. The elements were tested using a spread of patch 

tests. Besides the patch test, numerous numerical examples were conducted by 

using different element thicknesses. 

 

4   THE PATCH TEST 

The patch test had been performed to evaluate the elements ability to model 

constant strain. The test was performed for all strain components. The two 

normal strains were tested under both pure bending and pure membrane loads to 

assess their performance under both load conditions. The patch used in the tests 

is shown in Figure 2 and has been adopted from Reference [11] under applied 

load of 1000 N. 
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Figure 2.  The patch test elements 

 

The results obtained are summarized in Table (1). From the results it can be 

seen that all tests were passed except the test of pure bending. 

 

5   NUMERICAL EXAMPLES 

Five numerical examples which are widely used as bench marks are selected 

here.  

Table 1.  Summary of patch test results 

Test                            Stress Sx Sy Sxy Sxz Syz State 

Pure Bending x 758 382 -12 -6267 -6225 
Not 

Passed 

Pure In plane Shear 0 0 200 0 0 Passed 

Pure Membrane x 200 0 0 0 0 Passed 

Pure Transverse Shear xz 0 0 0 200 0 Passed 

Note: The exact results for all test are equal to 200 N/mm
2
 except for pure 

bending which is 1200 N/mm
2
 

 

The results have been presented in the form of plots of the maximum 

displacement versus the calculated ratio of the element thickness to its length 

for each mesh size. For the cylindrical shell, the length along the curved part 

has been used. 
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5.1   Pinched cylindrical shell 
In this example, many values of thicknesses ranging between 2.75 mm and 3.5 

mm have been used. The necessary data are shown in Figure 3. 
 

 
Figure 3.  Pinched cylindrical shell 

 

The results obtained for this example are shown in Figure 4. 
 

 
Figure 4.  Results of pinched cylindrical shell example 
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5.2   Barrel vault (scordelis-lo roof) 
In this example, the values of thicknesses are in the range from 0.25 ft to 0.35 ft. 

The data concerning this example are shown in Figure 5. 
 

 
Figure 5.  Scordelis-Lo roof 

 

The results obtained for this example are shown in Figure 6. 
 

 
Figure 6.  Results of Scordelis-Lo roof shell example 
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5.3   Simply supported thin plates 
In this example, the values of thicknesses are in the range from 11 cm to 12 cm. 

The data concerning this example are shown in Figure 7. The results obtained 

for this example are shown in Figure 8. 
 

 
Figure 7.  Simply supported thin plate example 

 

 
Figure 8.  Results of simply supported thin plate example 
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5.4   Short cantilever beam 
In this example, the values of thicknesses are in the range from 1.0 in to 1.4 in. 

The data concerning this example are shown in Figure 9 
 

 
Figure 9.  Short cantilever beam example 

 

The results obtained for this example are shown in Figure 10. 
 

 
Figure 10.  Results of short cantilever beam exam 
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6   DISCUSSION OF THE RESULTS 
The length of the element segment for each mesh size (s) for the cylindrical 

shell and (Ln) for the flat plate shell, can be calculated from: 

  
  

   
           

 

   
                                            

Where R is the radius for the curved side, θ is the subtended angle and NEM is 

the number of elements for each mesh size. 

As can be seen from Figures 4 and 6 which are related to the cylindrical 

shell, the convergence rate goes logically, but at a certain point, the divergence 

started and this matter is repeated for the different thicknesses of the shell. From 

observation, the ratio at which the divergence started to occur for the two 

examples is estimated by a value of 0.23 as indicated by the red arrow in the 

figures. Also, for the flat plate shell, the ratio at which divergence started to 

occur is estimated by a value of 0.9. These values of ratios can be used to 

calculate the suitable mesh size that give the best results close to the exact 

value. Accordingly, these values have been verified by using the following 

examples. 

 

7  VERIFICATION OF THE SELECTED RATIOS 

Three problems of known exact results have been used to verify the selected 

ratios for the two types of shells. The mesh size used is calculated according to 

the value of the ratio either 0.23 for curved shell or 0.9 for flat plate shell. 

 

7.1  Pinched cylindrical shell  

Same as the previous one shown in Figure 3 but with different data: (P = 20 

KN, E = 300 kN/mm
2
, L = 1500 mm, R = 500 mm, v = 0.3, t = 5 mm). 

The exact maximum displacement under pinned load is 2.69693 mm, was given 

by [12]. 

On-eight of the shell was analyzed so, the subtended angle θ is equal to 90º 

(1.571 in radian). With using the ratio equal to 0.23, the s can be calculated as: 

  
 

    
 

 

    
          

From Equation 12, the number of elements of mesh size can be calculated as 

    
          

      
       

This means that the suitable mesh size that can be used is 36x36. The maximum 

displacement under pinned load obtained using this mesh size is 2.69087 mm, 

which is almost identical (99.8%) to the exact result. 
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7.2  Spherical hinged cap 

 
Figure 11.  Spherical hinged cap  

 

The exact maximum displacement under pinned load is 0.03956 in as given by 

[13]. By the same procedure using ratio of 0.23, the suitable mesh size is found 

to be 37x37, which gives maximum displacement under pinned load of 0.03920 

in, which is almost identical (99.1%) with the exact one. 

 

7.3   Simply supported thin plate 
Same as the previous one shown in Figure 7 but with different data: (Load = 

12x10
-4

 kN/cm
2
, E = 2x10

3
 kN/cm

2
, L = 600 cm, v = 0.15, t = 15 cm).  

The exact maximum displacement at mid-point of the plate is 1.37157 cm as 

given by [14]. Because of flat plate shell used here, the ratio taken is 0.9 and the 

corresponding mesh size has been found to be 18x18. This gives a maximum 

displacement of 1.37613 cm, which is identical (100.3 %) with the exact one. 

 

8   CONCLUSIONS 
A four-node degenerated shell finite element was used by adopting five degrees 

of freedom per node. From the numerous methods recommended to use for 

solving the problem of locking, a reduced integration point's scheme was used. 

This remedy didn't solve the problem totally, still, the solution gained at certain 

mesh size tends to diverge with increased mesh size. The paper focused on this 

problem to obtain the mesh size at which divergence started to occur by using 

the ratio of thickness to the length of the element for each mesh size considered. 

This ratio is then used to calculate the suitable mesh size. The study focused on 

two types of shell: curved shell and flat plate shell. The ratios at which 

divergence started to occur have been found to be 0.23 for the curved shell and 

0.9 for the flat plate shell. These ratios were verified using problems of known 

values of displacements. By comparing the results obtained using the mesh size 

which matches the ratio recommended, identical results were obtained (by a 
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ratio 99.1% to 100.3%) for the two types of shell. Finally, it is concluded that 

these ratios are reasonable to use for calculating the mesh size that will give 

acceptable results as general. 
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