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ABSTRACT: The paper presents the exact analytical solutions for built-in and 

simply supported end conditions of uniform, isotropic deep beams using 

sinusoidal refined shear deformation theory (SSDT) under transverse bending. 

The theory is built upon the classical beam theory including sinusoidal function 

in terms of thickness coordinate to include the shear deformation effects. The 

kinematics of the theory enforces transverse shear stress to satisfy the shear 

stress-free conditions on the top and bottom planes of the beam. The shear 

stress distribution through the thickness is realistic and requires no shear 

correction factor. Using the principle of virtual work, the equilibrium equations 

and boundary conditions have been obtained based on kinematics of the theory. 

To demonstrate the efficacy of the theory, the exact analytical solutions for 

beams, with narrow rectangular cross sections, subjected to linearly varying 

load, parabolic load and cosine load are obtained to examine the complete 

flexural response. Results obtained are discussed critically with those of other 

theories. The solutions obtained can be served as a benchmark for comparison 

of results by other refined theories. 

 

KEYWORDS: Deep beam, Sinusoidal shear deformation, Principle of virtual 
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1   INTRODUCTION 
Beam theories are widely used in structural analysis of slender bodies, such as 

columns, arches, blades, aircraft wings and fuselage, long ships, and bridges. 

The beam theory reduces the three-dimensional problem to a one-dimensional 

one based on the neutral axis coordinate of the beam. The theories based on 

such reductions are simpler and more efficient compared to two and three-

dimensional theories. This virtue makes beam theories very attractive for the 

static and dynamic analysis of structures.                 

Bernoulli-Euler [1-4] developed the widely used classical or elementary theory 
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of beam bending almost 300 years ago. The historical development of this beam 

theory is given by Love [5]. The elementary theory of beam bending (ETB) is 

founded on the hypothesis that the plane sections remain plane and normal to 

the axis after bending, implying that the transverse shear and transverse normal 

strains are zero. Since theory neglects the transverse shear deformation, it is 

applicable for the analysis of slender beams. It underpredicts deflections in case 

of deep beams where shear deformation effects are significant. 

     Timoshenko [6] developed the first order shear deformation theory (FSDT) 

including rotatory inertia and shear deformation. In this theory transverse shear 

strain distribution is assumed to be constant across the beam thickness and 

requires shear correction factor to appropriately represent the strain energy of 

shear deformation. Further, FSDT does not satisfy the boundary condition of 

slope of deflection curve at the clamped support and needs to be revised to 

resolve this boundary condition paradox.    

     The discrepancies in classical and first order shear deformation theories led 

to the development of higher order or refined shear deformation theories for 

static and dynamic analysis of shear deformable beams. The methods of 

development of these theories are presented in Ghugal and Shimpi [7], Carrera 

et al. [8].   

    The higher order (third order) shear deformation theories of beams in terms 

of thickness coordinate, are developed by Levinson [9], Bickford [10], Rehfield 

and Murty [11], Krishna Murty [12], Baluch et al. [13], Bhimaraddi and 

Chandrashekhara [14] and Heyliger and Reddy [15]. These theories satisfy 

shear stress free boundary conditions on top and bottom surfaces of beam 

obviating the need of shear correction factor. However, the issues of bending 

and transverse shear stress distributions at the clamped boundary are not 

discussed.  

     The refined theories including trigonometric and hyperbolic functions to 

represent the shear deformation effects through the thickness also exist in the 

literature. Vlasov and Leont’ev [16] and Stein [17] developed refined shear 

deformation theories for thick beams including sinusoidal function in 

kinematics of the theory. However, shear stress free boundary conditions are not 

satisfied at top and bottom surfaces of the beam with these theories. Ghugal and 

Sharma [18, 19] developed a hyperbolic shear deformation theory for the static 

and dynamic analysis of thick beams. Ghugal and Dahake [20], Dahake and 

Ghugal [21] employed the refined shear deformation theory for flexure of thick 

simply supported and cantilever beams. Dufort et al. [22] obtained the closed-

form solution for the cross-section warping in short beams under three-point 

bending using higher order theories.   

     Filon [23] obtained the realistic shear stress distribution due to concentrated 

and uniform loads which simulates that variation at the built-in end. Coker [24] 

verified and validated this shear stress distribution across the depth of the beam 

experimentally using photo-elasticity. Hildebrand and Reissner [25] studied 
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bending and shear stress distributions at the built-in end of the cantilever beams 

of narrow rectangular cross section using plane stress theory and the principle 

of least work. It is shown that the distribution of stress near built-in end deviates 

appreciably from the one given by the elementary beam theory. Pearson [26], 

Carus Wilson [27] studied the influence of surface loading on the flexure beam.  

     Canales and Mantari [28] presented an analytical solution for static flexure 

of thick isotropic rectangular beams with different boundary conditions. 

However, the bending and transverse shear stress distributions have not been 

obtained at the built-in end to show the correctness of the method used.                          

      Critical reviews of refined theories are presented by Ghugal and Shimpi [7] 

and Sayyad and Ghugal [29]. It is seen that the Navier type solutions for simply 

supported boundary conditions are extensively used in the literature. However, 

the analytical solutions for static flexure of deep beams with built-in ends and 

specialized loading conditions using refined shear deformation theories are very 

limited.  To circumvent the limitation of Navier type solution, an exact solution 

procedure to solve boundary value problem is developed to account for any type 

of loading and boundary conditions. This paper presents the analytical solutions 

for the static flexure of deep beams with simply supported and built-in 

boundary conditions. The numerical results obtained are compared with other 

refined theories to validate the theory.  

 

2    MATHEMATICAL FORMULATION 
The beam under consideration as shown in Fig.1 occupies in zyx 0  

Cartesian coordinate system the region:                                                 

0 ; ;
2 2 2 2

b b h h
x L y z         

 

 
Figure 1.  Beam under bending in x-z plane with cross section 
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beam in the x and y directions respectively, and h is the thickness of the beam in 

the z-direction. The beam is made up of homogeneous, linearly elastic isotropic 

material. 

 

2.1   The kinematics of the theory 
The kinematics of the present beam theory is of the following form: 

    
( , ) sin ( )

( , ) ( )

dw h z
u x z z x

dx h

w x z w x





  


 

                             (1)      

where u  is the axial displacement in x direction and w is the transverse 

displacement in z direction. The sinusoidal function is assigned according to the 

shear stress distribution through the thickness of the beam. The   represents 

rotation of the beam at neutral axis, which is an unknown function to be 

determined. The kinematics proposed in Eq. (1) is strongly based on solution of 

three-dimensional Navier’s equations of elastostatics for thick plate under 

flexure presented by Green and Zerna [30] and Cheng [31] which involves 

transverse shear stress and transverse normal stress. The kinematics of proposed 

theory is the reduction problem from three-dimensional considerations to one-

dimensional one. Hence, the theory represented by Eq. (1) is the correct 

deduction from the three- dimensional elasticity theory of thick plate. It is the 

simplest and richest refined beam theory with minimum number of unknown 

displacement variables. Theory based on this function enforces realistic 

cosinusoidal variation of transverse shear stress through the thickness of beam 

and obviates the need of shear correction factor.  

The normal and shear strains are as follows:  

Normal strain              

2

 
2

= sinx

u d w h z d
z

x dx h dx

 





  


                               (2) 

 

Shear strain                           coszx

u dw z

z dx h


 


  


                                          (3) 

The stress-strain relationships according to one dimensional Hooke’s law are 

given by 

                                                x xE   and zx zxG                                             (4) 

where E  and G  are the elastic constants of the beam material.   

 

2.2   Equilibrium equations and boundary conditions 
Using the expressions for strains and stresses (2) through (4) and using the 

principle of virtual work, variationally consistent equilibrium equations and 

boundary conditions for the beam under consideration can be obtained. The 
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principle of virtual work when applied to the beam leads to:  

 
.

/2

0 /2 0
( ) 0x x zx zx

x L z h x L

x z h x
b dxdz q x wdx    

  

  
    

           
(5) 

where the symbol   stands for a virtual variation. Employing Green’s theorem 

in Eqn. (5) successively, we obtain the coupled Euler-Lagrange equations which 

are the equilibrium equations and associated boundary conditions of the beam. 

The equilibrium equations obtained are as follows:  

             
4 3

4 3 3

24d w d
EI EI q x

dx dx




                                  (6)   

            
3 2

3 3 2 2

24 6
0

2

d w d GA
EI EI

dx dx




 
  

                         

(7)   

The boundary conditions (natural and forced) obtained at the ends  x = 0  and    

x = L are as follows:  

3 2

3 3 2

24
Either 0x

d w d
V EI EI

dx dx




       or w is prescribed                            (8) 

2

2 3

24
Either 0x

d w d
M EI EI

dx dx




    or  

dw

dx
    is prescribed                         (9) 

2

3 2 2

24 6
Either 0s

d w d
M EI EI

dx dx



 
       or   is prescribed                    (10) 

where xV , xM  are the shear force and bending moment resultants respectively 

analogous to elementary theory of beam bending and sM  is the moment 

resultant because of transverse shear deformation. All the left-hand equations in 

Eqns. (8) to (10) are natural boundary conditions, and all the right-hand terms 

are the forced (rigid, kinematic, geometric) boundary conditions. The flexural 

behavior of the beam is described by the solution of these equations and 

simultaneously satisfaction of the associated boundary conditions. The 

boundary conditions for static flexure of beam under consideration can be 

obtained directly from Eqns. (8) through (10).  

 

2.3  Analytical solution of equilibrium equations of the beam  
The general solution for transverse displacement w(x) and warping function 

 (x) is obtained using Eqns. (6) and (7) using method of solution of linear 

differential equations with constant coefficients. Integrating and rearranging the 

first governing Eqn. (6), we obtain the following equation                                                    

                                                      
 3 2

3 3 2

24 Q xd w d

dx dx EI




                                         (11) 

 where Q(x) is the generalized shear force for beam and it is given by  
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  1

0

x

Q x qdx C  .  

Now second governing Eqn. (7) is rearranged in the following form:            

3 2

3 24

d w d

dx dx

 
                                         (12) 

Using Eqns. (11) and (12), a single equation in terms of  is now obtained as 

follows:  

                                     
2

2

2

( )d Q x

dx EI


 


                                            (13)  

where constants  ,   and  in Eqns. (12) and (13) are as follows  

3
2

3

24
, and

4 48

GA

EI

  
  

 

  
     
   

 

The general solution of Eqn. (13) is as follows: 

                                  2 3

( )
( ) cosh sinh

Q x
x C x C x

EI
  


                              (14) 

The equation of transverse displacement w(x) is obtained by substituting the 

expression of  (x) in Eqn. (14) and then integrating it thrice with respect to x. 

The general solution for w(x) is obtained as follows: 

 
3 2

21
2 3 4 5 63

( ) sinh cosh
6 4 2

C x EI x
EI w x qdxdxdxdx C x C x C C x C


   



 
        

 
     

 

(15)                                                                                                     

 where 1 2 3 4 5 6, , , , and C C C C C C are arbitrary constants and can be obtained by 

imposing natural (forced) and / or geometric or kinematical boundary / end 

conditions of beam.  

 

3 ILLUSTRATIVE EXAMPLES 
To prove the efficacy of the present theory, the four numerical examples are 

considered. The material properties for beam are as follows 

E = 210 GPa, μ = 0.3 and  = 7800 Kg/m
3
 

where E is the Young’s modulus,   is the density, and μ is the Poisson’s ratio 

of beam material. 

 

Example 1: A beam with built-in ends subjected to varying load, 

 A beam with built-in ends has its origin at left hand side support. The beam is 

subjected to varying load
0( )

x
q x q

L
  on surface z = +h/2 acting in the 
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downward z direction with maximum intensity of load 0q  as shown in Fig. 2. 
 

 
Figure 2.  A beam with built-in ends subjected to varying load.  

 
Following boundary conditions are used to obtained general solution: 

At built-in ends:                  0
dw

w
dx

   at x = 0, L 

General expressions using above boundary conditions obtained for  w x  and 

 x  are as follows: 

 
4 5 3 2 2 2

0

5 3 2 2 2

9 5 1 sinh cosh
3 2

120 5 3

q L x x x E h x x x x
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 
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   
       
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    (16) 

2

0

2

10
( ) 1 sinh cosh

3

q L x
x x x

EI L
  



 
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                

(17) 

Substituting expressions for w and   given by Eqns. (16) and (17) into Eqn. (1) 

through (4) the final expressions for axial displacement u, transverse 

displacement w, axial stresses x and transverse shear stress zx can be obtained 

respectively. 

Expression for axial displacement, u 

3 4 2 2

3 4 2 2

0

2

4 2

1 9 2 9 10
1 cosh sinh

2 10 5 50 3

36 z 10
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5 h 3
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
 



   
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Expression for axial stress, x    

2 3

2 3

0

4

9 2 9 10
2 (sinh cosh )

5 5 50 3

36 20
 sin (cosh sinh )

5 3

z L x x E
L x x
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

     
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  
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(19) 

Expression for transverse shear stress CR

zx  obtained from consecutive 

relationship: 

2

0

3 2

36 10
 cos 1 sinh cosh

5 3

CR

zx

q L z x
x x

b h h L


  



 
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             

(20) 

Expression for transverse shear stress
EE

zx  obtained from equilibrium equation:  

It is obtained by integrating the stress equilibrium equation of two-dimensional 

elasticity theory and satisfying shear stress free boundary conditions on top and 

bottom surfaces of beam, which is as follows: 

                0x zx

x z

  
 

 
                                                 (21) 
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(22) 

 

Example 2: A beam with built-in ends subjected to parabolic load, 

 A beam with built-in ends has its origin at left hand side support. The beam is 

subjected to parabolic load,
 

2

0 2
( ) 1

x
q x q

L

 
  

 
 on surface z = +h/2 acting in the 

downward z direction with maximum intensity of load 0q  as shown in Fig. 3. 

General expressions obtained for  w x  and  x  are as follows: 

 

4 6 2 3 2 4 2

4 6 2 3 2 2 4 24

0

2 2

2 2

1 26 12 1 1
5 4

3 3 12 6
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

 



  
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  
  

       
   

     (23) 
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Figure 3.  A beam with built-in ends subjected to parabolic load.  

 

 
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0

3
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1 sinh cosh
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  



 
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The axial displacement and stresses obtained based on above solutions are as 

follows: 

3 5 2 2 3
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(28) 

 

Example 3: Simply supported beam with cosine load,  

The simply supported beam is having its origin at left support and is simply 

supported at x = 0 and x = L. The beam is subjected to cosine load, 

0( ) cos
2

x
q x q

L


  on surface z = +h/2 acting in the downward z direction with 

maximum intensity of load 0q  as shown in Fig. 4.  

 

 
Figure 4.  Simply supported beam with cosine load 

 
Boundary conditions associated with this problem are as follows: 

Simple Supports:   
2

2
0

d w d
EI EI w

dxdx


    at x = 0, L  

General expressions obtained for transverse displacement  w x  and shear 

rotation  x  are as follows: 
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x
q x q

L


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q0 
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The expressions for axial displacement and stresses obtained based on above 

solutions are as follows:  
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4    RESULTS AND DISCUSSION 

4.1 Numerical results  

In this paper, the results for axial displacement, transverse displacement, axial 

and transverse stresses are presented in the following non-dimensional form for 

the purpose of presenting the results in this work. 

For beams subjected to various types of distributed loads, q(x) 

3

4

0 0 0 0

10
, , ,x zx

x zx

b bEbu Ebh w
u w

q h q L q q

 
      

The transverse shear stresses ( zx ) are obtained by constitutive relation and by 

integration of equilibrium equation of two-dimensional elasticity and are 

denoted by ( CR

zx ) and ( EE

zx ) respectively. The transverse shear stress satisfies 

the stress-free boundary conditions on the top  / 2z h  and bottom 

 / 2z h   surfaces of the beam when both the above-mentioned approaches 

are used to obtain these stresses. Results obtained are presented in Tables 1 

through 3 and in Figs. 5 through 16. 

 

Table 1. Non-dimensional axial displacement ( u ) at (x = 0.75L, z = h/2),  transverse 

deflection ( w ) at (x = 0.75L, z =0.0), axial stress (
x ) at (x = 0.0, z = h/2), maximum 

transverse shear stresses CR

zx  at (x= 0.01L, z =0.0) and EE

zx  at (x =0.01L, z =0.0) of 

the beam with built-in ends subjected to linearly varying load for aspect ratios  

(Example 1) 

Source  S Model u  w  
x  

CR

zx  
EE

zx  

Present 

4 

SSDT -2.2688 0.1761 5.1300 0.4426 -2.0074 

Ghugal & Sharma [18, 19] HPSDT -1.6684 0.2591 6.5984 0.5229 -3.7170 

Krishna Murty [12] HSDT -1.6670 0.2587 6.0172 0.4616 -2.2619 

Timoshenko [6] FSDT -1.5375 0.2781 3.2000 0.0962 0.9000 

Bernoulli-Euler [1-4] ETB -1.5375 0.1563 3.2000 — 0.9000 

Present 

10 

SSDT -25.8519 0.1598 25.9950 1.8617 -4.8045 

Ghugal & Sharma [18, 19] HPSDT -22.4012 0.1730 28.4866 1.9906 -9.2855 

Krishna Murty [12] HSDT -24.3472 0.1730 27.0928 1.8773 -5.6487 

Timoshenko [6] FSDT -24.0234 0.1757 20.0000 1.5038 2.2500 

Bernoulli-Euler [1-4] ETB -24.0334 0.1563 20.0000 — 2.2500 
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Figure 5. Variation of axial displacement ( u ) through the thickness of beam with built-in ends 

at (x = 0.75L, z) when subjected to varying load for aspect ratio 4. (Example 1) 
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Figure 6. Variation of axial stress (
x ) through the thickness of beam with built-in ends at (x= 

0, z) when subjected to varying load for aspect ratio 4. (Example 1) 
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Figure 7. Variation of transverse shear stress ( zx ) through the thickness of beam with built-in 

ends at (x = 0.01L, z) when subjected to varying load and obtain using constitutive relation for 

aspect ratio 4. (Example 1) 
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Figure 8. Variation of transverse shear stress ( zx ) through the thickness of beam with built-in 

ends at (x = 0.01L, z) when subjected to varying load and obtain using equilibrium equation for 

aspect ratio 4. (Example 1) 
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Table 2. Non-dimensional axial displacement ( u ) at (x=0.25l, z = h/2), transverse 

deflection ( w ) at (x = 0.25L, z =0.0) axial stress (
x ) at (x =0, z = h/2) maximum 

transverse shear stresses CR

zx
 
and EE

zx (x=0.01l, z =0.0) of the beam with built-in ends 

am subjected to parabolic load for aspect ratios (Example 2) 

Source S Model u  w  
x  

CR

zx  
EE

zx  

Present 

4 

SSDT 3.2032 0.3036 14.7191 5.6035 -1.8316 

Ghugal and Sharma [18, 

19] 

HPSDT 2.6673 0.2893 16.3009 5.2756 -3.0137 

Krishna Murty [12] HSDT 2.7480 0.2965 14.6098 5.2259 -1.9020 

Timoshenko [6] FSDT 2.1937 0.1943 6.4000 2.9776 2.5400 

Bernoulli-Euler [1-4] ETB 2.1937 0.1340 6.4000 — 2.5400 

Present 

10 

SSDT 3.2032 0.1624 59.9676 5.2259 2.2143 

Ghugal and Sharma [18,19] HPSDT 2.6673 0.1598 64.6002 5.6035 2.6138 

Krishna Murty [12] HSDT 2.7480 0.1611 60.3778 5.2756 2.5787 

Timoshenko [6] FSDT 2.1937 0.1437 40.0000 2.9777 6.3500 

Bernoulli-Euler [1-4] ETB 2.1937 0.1340 40.0000 — 6.3500 
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Figure 9. Variation of axial displacement ( u ) through the thickness of beam with built-in ends 

at (x = 0.75L, z) when subjected to parabolic load for aspect ratio 4. (Example 2) 
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Figure 10. Variation of axial stress (
x ) through the thickness of beam with built-in ends at (x = 

0, z) when subjected to parabolic load for aspect ratio 4. (Example 2) 
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Figure 11. Variation of transverse shear stress (
zx ) through the thickness of beam with built-in 

ends at (x = 0.01L, z) when subjected to parabolic load and obtain using constitutive relation for 

aspect ratio 4. (Example 2) 
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Figure 12. Variation of transverse shear stress (
zx ) through the thickness of beam with built-in 

ends at (x = 0.01L, z) when subjected to parabolic load and obtain using equilibrium equation for 

aspect ratio 4. (Example 2) 

 

Table 3. Non-dimensional axial displacement ( u ) at (x=0.25l, z = h/2), transverse 

deflection ( w ) at (x = 0.25l, z =0.0) axial stress (
x ) at (x =0, z = h/2) maximum 

transverse shear stresses CR

zx
 
and EE

zx (x=0.01l, z =0.0) of the simply supported beam 

subjected to cosine load for aspect ratios (Example 3) 

Source S Model u  w  
x  

CR

zx  
EE

zx  

Present 

4 

SSDT 7.4974 0.9041 -7.0189 2.4140 -4.1749 

Ghugal & Sharma [18, 19] HPSDT 7.4893 0.9046 -7.0039 2.3557 -6.4511 

Krishna Murty [12] HSDT 7.4882 0.9046 -7.0039 2.3483 -4.8807 

Timoshenko [6] FSDT 7.3266 0.9050 -6.7651 2.1534 2.4317 

Bernoulli-Euler [1-4] ETB 7.3266 0.7676 -6.7651 — 2.4317 

Present 

10 

SSDT 114.9057 0.7894 -42.5361 6.1785 -0.5273 

Ghugal & Sharma [18, 19] HPSDT 114.8855 0.7895 -42.5202 5.9918 -2.8035 

Krishna Murty [12] HSDT 114.8828 0.7895 -42.5212 5.9959 -1.2332 

Timoshenko [6] FSDT 114.8828 0.7895 -42.2824 1.3458 6.0792 

Bernoulli-Euler [1-4] ETB 114.4789 0.7676 -42.2824 — 6.0792 
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Figure 13. Variation of axial displacement ( u ) through the thickness of simply supported beam 

at (x = 0.25L, z) when subjected to cosine load for aspect ratio 4. (Example 3) 
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Figure 14. Variation of axial stress (

x ) through the thickness of simply supported beam at (x = 

0.25L, z) when subjected to cosine load for aspect ratio 4. (Example 3) 
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Figure 15. Variation of transverse shear stress (

zx ) through the thickness of simply supported 

beam at (x = 0, z) when subjected to cosine load and obtain using constitutive relation for aspect 

ratio 4. (Example 3) 
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Figure 16. Variation of transverse shear stress (

zx ) through the thickness of simply supported 

beam at (x = 0, z) when subjected to cosine load and obtain using equilibrium equation for aspect 

ratio 4. (Example 3) 
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4.2   Discussion of results  
The results obtained from the present sinusoidal or trigonometric shear 

deformation theory (SSDT/TSDT) are compared with those of the elementary 

beam theory (ETB) [1-4], first order shear deformation theory (FSDT) of 

Timoshenko [6], higher order shear deformation theories (HSDT) of Krishna 

Murty [12] and hyperbolic shear deformation theory (HPSDT) of Ghugal and 

Sharma [18, 19]. The results in this section are discussed with respect to each 

example.  

 

Example 1: The comparison of results of maximum non-dimensional axial 

displacement ( u ) for the aspect ratios of 4 and 10 is presented in Table 1 for 

the beam with built-in ends subjected to linearly varying load (see Fig. 2). The 

values of axial displacement given by present theory are in close agreement 

with the values of other refined theories for aspect ratio 4 and 10. The through 

thickness distribution of this displacement obtained by present theory is in close 

agreement with other refined theories except the one given by classical and first 

order shear deformation theory (FSDT) as shown in Fig. 5 for aspect ratio 4.  

    The comparison of results of maximum non-dimensional transverse 

displacement ( w ) for the aspect ratios of 4 and 10 is presented in Table 1. 

Among the results of all the other theories, the values of present theory are in 

good agreement with the values of other refined theories for aspect ratio 4 and 

10 except those of classical beam theory (ETB) and FSDT of Timoshenko. 

    The results of axial stress ( x ) are shown in Table 1 for aspect ratios 4 and 

10. The axial stresses given by present theory are compared with other higher 

order shear deformation theories. It is observed that the results by present theory 

are in good agreement with other refined theories. However, ETB and FSDT 

yield lower values of this stress as compared to the values given by other 

refined theories. The through the thickness variation of this stress given by ETB 

and FSDT is linear. Present and other higher order refined theories provide the 

non-linear variations of axial stress across the thickness at the built-in end due 

to heavy stress concentration. However, this effect of local stress concentration 

cannot be captured by lower order theories such as ETB and FSDT. The 

variations of this stress are shown in Fig. 6.   

     The comparison of maximum non-dimensional transverse shear stress for 

beams with built-in ends subjected to varying load obtained by the present 

theory and other refined theories is presented in Table 1 for aspect ratio of 4 and 

10 respectively. The maximum transverse shear stress obtained by present 

theory using constitutive relation is in good agreement with that of higher order 

theory (HSDT), however HPSDT shows little departure from these theories for 

aspect ratio 4, and for aspect ratio 10 results of present theory and HSDT are in 

excellent agreement with each other. Among the values of this stress, the values 

obtained by HPSDT using equilibrium equation show considerable departure 
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from the values of present and HSDT. The values of present theory and those of 

HSDT are in good agreement with each other. The through thickness variations 

of this stress obtained via constitutive relation are presented graphically in Figs. 

7 and those obtained via equilibrium equation are presented in Fig. 8. It can be 

seen from these figures that the nature of variation obtained by both the 

approaches is different from each other.  

    The through-the-thickness variation of this stress via equilibrium equation 

shows the anomalous behavior (changes its sign) due to heavy stress 

concentration associated with the built-in end of the beam which agrees with the 

photo-elasticity theory of Coker [24] and theory of Hildebrand and Reissner 

[25]. The maximum value of this stress does not occur at the neutral axis; 

however, it is observed to be shifted at z = 0.375h. The ETB and FSDT yield the 

identical values this stress at z = 0 and the variations across the thickness of the 

beam. It is seen that the anomalous behavior in the vicinity of built-in end 

cannot be captured by constitutive relation. Further, lower order theories, ETB 

and FSDT, cannot predict this behavior even with the use of equilibrium 

equation. Hence, the use of higher order or equivalent shear deformation 

theories is necessary to recover the effects of stress concentration at the built-in 

end of the beam with the use of equilibrium equation of two-dimensional theory 

of elasticity.  

 

Example 2: The comparison of results of maximum non-dimensional axial 

displacement ( u ) for the aspect ratios of 4 and 10 is presented in Table 2 for 

the beam with built-in ends subjected to parabolic load (see Fig. 3). The values 

of axial displacement given by present theory are in good agreement with the 

values of other refined theories for aspect ratio 4 and 10. The through-the-

thickness distribution of this displacement obtained by present theory is in close 

agreement with other refined theories except the one given by classical and first 

order shear deformation theory (FSDT) as shown in Fig. 9 for aspect ratio 4. 

    The comparison of results of maximum non-dimensional transverse 

displacement ( w ) for the aspect ratios of 4 and 10 is presented in Table 2. The 

values of present theory are in excellent agreement with the values of other 

refined theories for aspect ratio 4 and 10 except those of classical beam theory 

(ETB) and FSDT of Timoshenko.   

     The results of axial stress ( x ) are shown in Table 2 for aspect ratios 4 and 

10. The axial stresses given by present theory are compared with other higher 

order shear deformation theories. It is observed that the results by present theory 

are in excellent agreement with those of HSDT of Krishna Murty [12]. 

However, ETB and FSDT yield lower values of this stress as compared to the 

values given by other refined theories. The through the thickness variation of 

this stress given by ETB and FSDT is linear. Present and other higher order 

refined theories provide the non-linear variations of axial stress across the 
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thickness at the built-in end due to heavy stress concentration. However, this 

effect of local stress concentration cannot be captured by lower order theories 

such as ETB and FSDT. The variation of this stress is shown in Fig. 10.   

    The comparison of maximum non-dimensional transverse shear stress is 

presented in Table 2 for aspect ratio of 4 and 10. The maximum transverse shear 

stresses obtained by present theory using constitutive relation are in good 

agreement with those of higher order theories. Among the values of this stress, 

the values obtained by HPSDT using equilibrium equation show considerable 

departure from the values of present and HSDT. The values of present theory 

and those of HSDT are in good agreement with each other. The through 

thickness variation of this stress obtained via constitutive relation is presented 

graphically in Fig. 11 and that is obtained via equilibrium equation is presented 

in Fig. 12. It can be seen from these figures that the nature of variation obtained 

by both the approaches is different from each other.  

    The through thickness variation of this stress via equilibrium equation shows 

the anomalous behavior (changes its sign) due to heavy stress concentration 

associated with the built-in end of the beam.  The maximum value of this stress 

does not occur at the neutral axis; however, it is observed to be shifted at z = 

0.375h. The ETB and FSDT yield the identical values of this stress at z = 0 and 

the variations across the thickness of the beam. It is seen that the anomalous 

behavior in the vicinity of built-in end cannot be captured by constitutive 

relation. Further, lower order theories, ETB and FSDT, cannot predict this 

behavior even with the use of equilibrium equation. Hence, the use of higher 

order or equivalent shear deformation theories is necessary to recover the 

effects of stress concentration at the built-in end of the beam with the use of 

equilibrium equation of two-dimensional theory of elasticity. 

 

Example 3: The comparison of results of maximum non-dimensional axial and 

transverse displacements ( u ) and ( w ) for the aspect ratios of 4 and 10 is 

presented in Table 3 for the simply supported beam subjected to cosine load 

(see Fig. 4). The values of these displacements given by present theory are in 

excellent agreement with those of other refined theories for aspect ratio 4 and 

10. The through-the-thickness distribution of axial displacement obtained by 

present theory is in close agreement with other refined theories as shown in Fig. 

13 for aspect ratio 4.  

    The results of axial stress ( x ) are shown in Table 3 for aspect ratios 4 and 

10. It is observed that the results obtained by present theory are in excellent 

agreement with those of other refined theories. However, ETB and FSDT show 

the little departure from the values of refined theories. The through the 

thickness variation of this stress given by refined and ETB and FSDT is linear. 

The variation of this stress is shown in Fig. 14. 

    The comparison of maximum non-dimensional transverse shear stress is 
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presented in Table 3 for aspect ratio of 4 and 10. The maximum transverse shear 

stresses obtained by present theory using constitutive relation are in excellent 

agreement with those of higher order theories. The through thickness variation 

of this stress obtained via constitutive relation is presented graphically in Fig. 

15. The through thickness variation of this stress via equilibrium equation is 

shown in Fig. 16. The nature of this stress obtained by refined theories shows 

reversal of sign as compared to one obtained by ETB and FSDT. It can be seen 

from these figures that the nature of variation obtained by both the approaches 

is different from each other.    

 

5    CONCLUSIONS 
A sinusoidal refined shear deformation theory for flexure of rectangular deep 

beams with different support and loading conditions is presented. The results 

obtained are discussed with those of other refined theories. From the results and 

discussion of present study following conclusions are drawn.  

1. The axial and the transverse displacements predicted by the present theory 

are in excellent in agreement with the other shear deformation theories. The 

distribution of axial displacement across the depth is non-linear and realistic. 

2. The axial stresses and their distributions across the thickness of beam given 

by present theory are in excellent agreement with those of higher order shear 

deformation theories. The variation of this stress is non-linear through-the-

thickness of beam. 

3. The transverse shear stresses and their distributions through the thickness of 

beam obtained from constitutive relation are in close agreement with that of 

other higher order refined theories. Study, however, reveals that the use of 

constitutive relation cannot predict the effect of stress concentration in the 

neighbourhood of the built-in end of the beam. 

4. The effect of stress concentration on variation of transverse shear stress is 

exactly predicted by the present theory with the use of equilibrium equation 

of two-dimensional elasticity. The realistic variations of these stresses at the 

built-in end of beams are presented. Hence, the use of equilibrium equation 

is inevitable to predict the effect stress concentration in accordance with the 

higher/ equivalent refined shear deformation theories. 

5. The nature of shear stress distribution for a simply supported beam subjected 

to cosine load depicted the reversal of sign as compared to the one obtained 

by constitutive relation and the distributions obtained by ETB and FSDT 

using equilibrium equation.  

In general, the use of present theory gives accurate results as seen from the 

numerical examples studied and it can predict the local effects in the vicinity of 

the built-in end of the deep beams. This validates the efficacy and credibility of 

refined sinusoidal shear deformation theory. 
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