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ABSTRACT: A great deal of literature is available on the flexural analysis of 

composite beams, plates and shells using higher order shear deformation 

theories. However, a limited research work is available on the flexural analysis 

of arches made up of functionally graded (FG) type composite materials using 

higher order theory. Therefore, flexural analysis of FG arches subjected to 

uniform load is the main focus of the present study. A trigonometric curved 

beam theory considering the effects of transverse shear and normal stresses is 

applied for the flexural analysis of two hinged FG arches. Material properties of 

FG arches are varied through the thickness according to the power-law 

distribution. The present theory imparts the sinusoidal variation of normal strain 

and cosine distribution of shear strain through the thickness. It satisfies the zero 

shear stress conditions on the top and bottom surfaces of the arch using 

constitutive relations. Equilibrium equations of the theory are derived within the 

framework of the principle of virtual work. Analytical solutions for the flexural 

analysis of two hinge arches are obtained using Navier’s technique. The non-

dimensional displacements and stresses are obtained for different radii of 

curvature and various values of power law coefficients. The results of present 

theory are compared with those of EBT, FSDT and PSDT theories. The 

numerical results presented in this study will be useful for the reference of 

future research in this area.   

 

KEYWORDS: Bending; FG Arches; Normal Deformation; Shear Deformation; 

Trigonometric Beam Theory.  

 

1 INTRODUCTION 
Composite arches or curved beams subjected to static loading are widely 

appeared in highway as well as railway bridges and hence required accurate 

static flexural analysis i.e. accurate estimation of displacements and stresses in 

the composite arches subjected to transverse static loadings. Bernoulli-Euler 
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beam theory (EBT) [1] and Timoshenko beam theory (TBT) [2] also called as 

first order shear deformation theory (FSDT) predict inaccurate displacements 

and stresses in arches due to neglect of transverse shear and normal deformation 

effects. These effects are more pronounced in arches made up of advanced 

composite materials such as functionally graded (FG) materials. This has forced 

the researchers to develop the refined theories to account for the effect of 

transverse shear and normal deformations. All these higher-order theories are 

systematically documented by Sayyad and Ghugal [3-5]. One of the important 

and well-known higher order beam theories is the parabolic shear deformation 

theory of Reddy [6] which is widely used by many researchers.  

Several articles have been published in the literature on static and free 

vibration analysis of laminated composite and sandwich curved beams using 

refined theories based on numerical methods. Some of them are presented by 

Bhimaraddi et al. [7], Qatu [8], Ecsedi and Dluhi [9], Marur and Kant [10], Guo 

et al. [11], Ye et al. [12], Thurnherr et al. [13], Eroglu [14], Kurtaran [15], Luu 

et al. [16], Nanda and Kapuria [17], Hajianmaleki and Qatu [18], Jun et al. [19], 

etc.  

Functionally graded (FG) material is an advanced composite material in 

which elastic properties are varied continuously along the dimensions of the 

structure. FG materials possess a number of advantages in many engineering 

applications including bridges. In the last decade a lot of research has been 

carried out by researchers on analysis of beams, plates and shells made up of 

FG composite materials [20-42]. However, literature on static and free vibration 

analysis of FG arches is rarely available.  

 

1.1 Novelty statements 
This paper focuses on the analysis of FG arches subjected to uniform load and 

has the following novelties.  

1) Many research papers have been published by researchers on the analysis of 

beams, plates and shells made up of FG composite materials in the last 

decade. However, a limited research work is available on analysis of 

arches/curved beams made up of FG composite material. Hence, static 

flexural analysis of FG arches is presented in this paper. 
2) It is observed that the analysis of FG arches or curved beams considering the 

effect of transverse shear and normal deformations are also not available in 

the literature. Therefore, in the present study, a trigonometric curved beam 

theory considering the effects of both transverse shear and normal 

deformations is used for the analysis of FG arches. 
3) Numerical results presented in this paper will be useful for the future 

researchers for the comparison of their results.  
This paper includes six main sections. Section 1 deals with literature review and 

novelty statements. Section 2 represents geometry and material properties of the 
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arches. Sections 3 and 4 represent mathematical modeling and analytical 

solutions respectively. Numerical results along with discussion are presented in 

section 5 whereas section 6 represents important conclusions drawn from the 

study. 

 

2 GEOMETRY AND MATERIAL PROPERTIES OF ARCHES 
In the present study, advanced composite arches made up of FG composite 

material are considered in the mathematical formulation and numerical study. 

Geometry and coordinate systems of the arch under consideration are shown in 

Fig. 1. The arch has curved length L, cross-sectional area b×h and radius of 

curvature R. The beam occupies the region 0≤ x ≤ L; -b/2≤ y ≤ b/2; -h/2≤ z ≤ h/2 

in Cartesian coordinate systems. The z-axis is assumed downward positive. 
 

 
Figure 1.  Two hinge arch under consideration 

 
The FG composite material is made up from ceramic and metal. The elastic 

properties of material varied through the thickness of arch. The power-law is 

used for the gradation of elastic properties of the material. The law follows 

linear rule of mixture. 
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where E(z)=Em at z =-h/2 i.e. top surface and E(z)=Ec at z =h/2 i.e. bottom 

surface; Em and Ec represent the modulus of elasticity of metal and ceramic 

respectively; and p is the power-law coefficient. Eq. (1) leads to the variation of 

modulus of elasticity along the z-direction as shown in Fig. 2.  
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Figure 2.  Gradation of modulus of elasticity across the thickness of FG arch 

 

3 MATHEMATICAL MODELING 
Mathematical modeling of the present trigonometric curved beam theory for FG 

arches is based on the following assumptions.  

1) The displacement in x-direction (u) consists of the extension and bending 

components analogous to the classical curved beam theory, and shear 

component is considered to account the effect of shear deformation.  

2) The curvature effect (arch) is incorporated by considering the radius of 

curvature in the displacement field as well as in strain calculations.  

3) The transverse displacement consists of transverse normal strain effect ( z ). 

Therefore, it is a function of two space variables (x, z).  

4) The theory accounts for a traction free boundary condition at the top and 

bottom surfaces of the arch.  

5) The two-dimensional Hooke’s law is used to represent the state of stress at a 

point in arch.  

Based on these assumptions, following displacement field is assumed for the 

present trigonometric curved beam theory, 
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where u and w are the displacements in x- and z-directions, respectively; 

0 0andu w  are the displacements of neutral axis in x- and z- directions, 
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respectively; R is the radius of curvature;  x  and z are the unknown functions 

associated with transverse shear and normal deformations. Trigonometric sine 

and cosine functions are assumed according to transverse shearing strain 

distribution across the thickness of the arch. All four unknown variables 

( 0 0u , w , x , z ) are the functions of variable x. The nonzero normal strains 

corresponding to the present displacement field are given as; 
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  (3) 

The arch is made up of FG composite materials where modulus of elasticity is 

varying through the thickness i.e. z-direction. Therefore, stiffness coefficients 

(Qij) are functions of z. The generalized Hooke’s law is used to obtain stresses 

( x z xz, ,   ) in FG arches as 
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where Qij are the stiffness coefficients correlated with the engineering constants 

as follows: 
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Governing equations of the present trigonometric curved beam theory are 

derived by using the principle of virtual work as stated below: 
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Substitution of strain and stress expressions from Eqs. (3) and (4) into Eq. (6), 

one can get the following expression. 

                      
 

  

 
  

   
   

   
 

    
 



2
0 0 0

2

0
0

c s x
x x x xL

z z
z zz z z x z

u w w
N M M N

x x Rx dx

Q Q V V q x w
R x

        (7) 

After integrating Eq. (7) by parts, one can get the following equation 
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where  c s

x x x z zz zN ,M ,M ,Q ,Q ,V  are the force and moment resultants associated 

with the present trigonometric curved beam theory as defined below:  
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Substituting expressions of stresses in Eq. (9), the following expressions for the 

stress resultants (force and moments) in terms of displacement variables 

( 0 0, , ,x zu w   ) can be obtained. 
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where the extensional, bending and coupling stiffness coefficients appeared in 

the Eq. (10) are as follows:  
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Governing equations associated with the present trigonometric curved beam 

theory are obtained by collecting the coefficients of displacement variables 

( 0 0 x zu , w , ,    ) from Eq. (8) and setting them equal to zero.  
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The boundary terms in the Eq. (8) represent the boundary conditions.  

Following are the boundary conditions for arches associated with the present 

trigonometric curved beam theory.  
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By substituting the force and moment resultants from Eq. (10) into Eq. (12), the 

governing equations can be expressed in displacement variables as follows:   
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Eqs. (14) are the governing equations for advanced composite arches made up 

of functionally graded composite materials.  

 

4 ANALYTICAL SOLUTIONS FOR TWO HINGE ARCHES  
The Navier’s technique is used for obtaining analytical solutions for the static 

flexural analysis of two hinge arches under uniform loading. The arch has 

following boundary conditions at ends. 

                                0 0c s

x x xw N M M      at x = 0 and x = L                    (15) 

The unknown variables 0 0 x zu ,w , ,   in the displacement field are expanded in 

trigonometric series which satisfy the boundary conditions mentioned in Eq. 

(15).  
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                           (16) 

where  , , ,m m xm zmu w    are the unknown coefficients and q0 is the maximum 

intensity of the uniform load.  Substitution of Eq. (16) into the Eqs. (14) leads to 

a set of algebraic equations which can be written in the following matrix form   

                                                 
    K F                                             (17) 

where elements of stiffness matrix [K], displacement vector    and force 

vector {F} are as follows: 
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       (18) 

Stiffness matrix is always symmetric matrix. Solution of Eq. (17) gives values 

of unknown coefficients of Eq. (16). Using these values displacement variables 

of Eq. (2) can be determined. With the help of displacement variables, one can 

determine displacements and stresses in two hinge arches subjected to uniform 

load.  

 

5 NUMERICAL RESULTS AND DISCUSSION 
The present trigonometric curved beam theory is applied for the flexural 

analysis of FG composite arches subjected to uniform load. The arch is made up 

of ceramic (Al2O3: cE = 380 GPa, c = 0.3) and metal (Al: mE = 70 GPa, m = 
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0.3). The numerical results are presented in the following non-dimensional 

form.  
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                           (19) 

Convergence of the numerical results is found at m = 11 for the transverse 

displacement and m = 25 for the axial displacement and stresses. The length of 

the beam is taken as 1m (L = 1m) for all problems. Thickness and radius of 

curvature are varying according to L/h and R/L ratios. 

    The numerical results of displacements and stresses are presented in Tables 1 

through 6 and plotted graphically in Figs. 3 through 8. The thickness of arch is 

taken as h. To compare the displacements and stresses obtained by the present 

theory, those are also obtained using parabolic shear deformation theory 

(PSDT) of Reddy [6], first order shear deformation theory (FSDT) of 

Timoshenko [2] and Euler-Bernoulli beam theory (EBT) [1]. The PSDT, FSDT 

and EBT neglected effects of transverse normal stress ( z ).   

    Table 1 shows a comparison of transverse displacement obtained for FG 

composite arches subjected to uniform load. Numerical results are presented for 

aspect ratio (L/h) = 5, different values of radius of curvature to length (R/L= 

5,10,20,50,100) ratio and different values of power-law coefficient (p = 

0,1,2,5,10). From Table 1 it is pointed out that the present theory underestimates 

the transverse displacement compared to those obtained by using PSDT for all 

values of R/L. The EBT shows significant difference in the displacements due to 

neglect of transverse shear and normal strains. The values of non-dimensional 

transverse displacement increase with an increase in power law coefficients; 

because, increase in the power-law coefficients increases the flexibility of 

arches. Fig. 3 shows through-the-thickness distribution of transverse 

displacement. Due to transverse normal deformation effect, the value of 

transverse displacement is not constant through the thickness. Table 2 and Fig. 

4 show the variation of transverse displacement along the length (x/L). Fig. 4 

satisfies the boundary conditions, i.e. zero at supports (x = 0 and x = L) and 

maximum at the center of length (x=L/2).  

    Table 3 shows a comparison of axial stress of FG arches subjected to uniform 

load. Maximum values of axial stress are obtained at m = 25, L/h = 5, p = 
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(0,1,2,5,10) and R/L = (5,10,20,50,100). EBT, FSDT underestimate the axial 

stress for all values of power law coefficients and R/L ratios. Axial stress 

increases with increase in power law coefficient as well as R/L ratio. Fig. 5 

shows through-the-thickness distributions of axial stress in FG arches subjected 

to uniform load. It is pointed out that the axial stress is zero at z/h = 0 for p = 0, 

however, for non-zero value of p (=1,2,5,10…) axial stress is not zero at z/h = 0. 

This is due to gradation of material properties across the thickness. In Fig. 5, z/h 

= -0.5 to z/h = 0 represent a compression zone, whereas z/h = 0 to z/h = 0.5 

represents a tension zone. It is also observed that axial stress in tension zone 

increases with an increase in power law coefficient. Table 4 shows variation of 

axial stress along the length of the arch. Also depicted graphically in Fig. 6. 

Axial stress is maximum at the center and zero at the support. 

    Table 5 shows comparison of transverse shear stress obtained using the 

present theory and PSDT. EBT predicts zero value of transverse shear stress due 

to neglect of transverse shear deformation. Examination of Table 5 reveals that 

the effect of curvature on shear stress is negligible. For all values of R/L ratio, 

shear stress is almost same. Fig. 7 shows through-the-thickness distribution of 

transverse shear stress, which reveals that the maximum shear stress is not at z/h 

= 0 for p = 1,2,5,10. This is due to gradation of elastic properties of FG 

material. Table 6 and Fig. 8 show the variation of transverse shear stress along 

the length satisfying boundary conditions, i.e. maximum at supports and zero at 

center of the span.      
 

Table 1.  Comparison of the transverse displacements of FG arches under 

uniform load (L/h=5) 

Theory p R/L=5 R/L=10 R/L=20 R/L=50 R/L=100 R/L=∞ (Beam) 

Present 0 3.1355 3.1356 3.1357 3.1357 3.1357 3.1357 

Bernoulli-Euler [1]  2.8781 2.8782 2.8783 2.8783 2.8783 2.8783 

Timoshenko [2]  3.1654 3.1656 3.1657 3.1657 3.1657 3.1657 

Reddy [6]  3.1651 3.1653 3.1654 3.1654 3.1654 3.1654 

Present 1 6.1482 6.1316 6.1233 6.1184 6.1168 6.1151 

Bernoulli-Euler [1]  5.7861 5.7704 5.7626 5.7580 5.7565 5.7746 

Timoshenko [2]  6.2933 6.2763 6.2678 6.2628 6.2612 6.2599 

Reddy [6]  6.2896 6.2726 6.2641 6.2591 6.2575 6.2594 

Present 2 7.8773 7.8558 7.8453 7.8389 7.8368 7.8347 

Bernoulli-Euler [1]  7.4440 7.4237 7.4138 7.4078 7.4058 7.4003 

Timoshenko [2]  8.0821 8.0601 8.0493 8.0427 8.0406 8.0303 

Reddy [6]  8.1136 8.0915 8.0807 8.0741 8.0719 8.0677 

Present 5 9.6298 9.6069 9.5956 9.5889 9.5866 9.5844 

Bernoulli-Euler [1]  8.8016 8.7807 8.7704 8.7643 8.7622 8.7508 

Timoshenko [2]  9.7434 9.7203 9.7088 9.7020 9.6997 9.6483 

Reddy [6]  9.8705 9.8471 9.8355 9.8286 9.8263 9.8291 

Present 10 10.787 10.761 10.748 10.740 10.738 10.735 

Bernoulli-Euler [1]  9.6544 9.6311 9.6195 9.6123 9.6105 9.6072 

Timoshenko [2]  10.776 10.750 10.737 10.729 10.727 10.719 

Reddy [6]  10.992 10.965 10.952 10.944 10.942 10.938 

 



64                                                             Flexural analysis of advanced composite arches 
 

Table 2.  Transverse displacement for various values of length coordinate (x/L) 

Theory p x/L=0 x/L=0.2 x/L=0.4 x/L=0.5 x/L=0.6 x/L=0.8 x/L=1 

Present 0 0 1.8738 2.9879 3.1355 2.9879 1.8738 0 

Present 1 0 3.6723 5.8593 6.1482 5.8593 3.6723 0 

Present 2 0 4.7075 7.5075 7.8773 7.5075 4.7075 0 

Present 5 0 5.7668 9.1797 9.6298 9.1797 5.7668 0 

Present 10 0 6.4651 10.2842 10.787 10.2842 6.4651 0 

 
Table 3. Comparison of the axial stress of FG arches under uniform load (L/h=5) 

Theory p R/L=5 R/L=10 R/L=20 R/L=50 R/L=100 R/L=∞ (Beam) 

Present 0 3.8220 3.8401 3.8491 3.8545 3.8563 3.8581 

Bernoulli-Euler [1]  3.7150 3.7326 3.7413 3.7466 3.7483 3.7500 

Timoshenko [2]  3.7150 3.7326 3.7413 3.7466 3.7483 3.7500 

Reddy [6]  3.7647 3.7825 3.7914 3.7967 3.7985 3.8020 

Present 1 5.9366 5.9583 5.9689 5.975 5.9771 5.9791 

Bernoulli-Euler [1]  5.7526 5.7736 5.7839 5.7898 5.7918 5.7959 

Timoshenko [2]  5.7526 5.7736 5.7839 5.7898 5.7918 5.7959 

Reddy [6]  5.8416 5.8630 5.8734 5.8794 5.8815 5.8836 

Present 2 6.9448 6.9679 6.9791 6.9856 6.9877 6.9899 

Bernoulli-Euler [1]  6.7226 6.7449 6.7558 6.7621 6.7641 6.7676 

Timoshenko [2]  6.7226 6.7449 6.7558 6.7621 6.7641 6.7676 

Reddy [6]  6.8337 6.8564 6.8674 6.8738 6.8759 6.8826 

Present 5 8.1850 8.2117 8.2246 8.2321 8.2346 8.2371 

Bernoulli-Euler [1]  7.8903 7.9161 7.9285 7.9357 7.9382 7.9428 

Timoshenko [2]  7.8903 7.9161 7.9285 7.9357 7.9382 7.9428 

Reddy [6]  8.0540 8.0803 8.0930 8.1004 8.1028 8.1106 

Present 10 9.7885 9.8207 9.8362 9.8454 9.8485 9.8515 

Bernoulli-Euler [1]  9.4459 9.4770 9.4919 9.5008 9.5038 9.5228 

Timoshenko [2]  9.4459 9.4770 9.4919 9.5008 9.5038 9.5228 

Reddy [6]  9.6378 9.6695 9.6847 9.6938 9.6968 9.7122 

 
Table 4.  Axial stress for various values of length coordinate (x/L) 

Theory p x/L=0 x/L=0.2 x/L=0.4 x/L=0.5 x/L=0.6 x/L=0.8 x/L=1 

Present 0 0 2.4662 3.6699 3.8220 3.6699 2.4662 0 

Present 1 0 3.8324 5.7003 5.9366 5.7003 3.8324 0 

Present 2 0 4.4888 6.6691 6.9448 6.6691 4.4888 0 

Present 5 0 5.3050 7.8617 8.1850 7.8617 5.3050 0 

Present 10 0 6.3396 9.4017 9.7885 9.4017 6.3396 0 
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Table 5. Comparison of the transverse shear stress of FG arches under uniform 

load (L/h=5) 

Theory p R/L=5 R/L=10 R/L=20 R/L=50 R/L=100 R/L=∞ (Beam) 

Present 0 0.7436 0.7436 0.7436 0.7436 0.7436 0.7436 

Reddy [6]  0.7332 0.7332 0.7332 0.7332 0.7332 0.7332 

Present 1 0.7432 0.7431 0.7430 0.7430 0.7430 0.7430 

Reddy [6]  0.7332 0.7332 0.7332 0.7332 0.7332 0.7332 

Present 2 0.6832 0.6831 0.6831 0.6830 0.6830 0.6830 

Reddy [6]  0.6708 0.6707 0.6707 0.6706 0.6706 0.6706 

Present 5 0.6074 0.6073 0.6073 0.6072 0.6072 0.6072 

Reddy [6]  0.5907 0.5906 0.5905 0.5905 0.5905 0.5905 

Present 10 0.5813 0.5813 0.5812 0.5812 0.5812 0.5812 
Reddy [6]  0.5770 0.5770 0.5769 0.5769 0.5769 0.5769 

 

Table 6.  Transverse shear stress for various values of length coordinate (x/L) 

Theory p x/L=0 x/L=0.2 x/L=0.4 x/L=0.5 x/L=0.6 x/L=0.8 x/L=1 

Present 0 0.7436 0.713 0.6516 0 0.6516 0.7130 0.7436 

Present 1 0.7432 0.7125 0.6512 0 0.6512 0.7125 0.7432 

Present 2 0.6832 0.6552 0.5991 0 0.5991 0.6552 0.6832 

Present 5 0.6074 0.5828 0.5332 0 0.5332 0.5828 0.6074 

Present 10 0.6619 0.6351 0.5813 0 0.5813 0.6351 0.6619 

 

 

   
Figure 3. Variation of transverse displacement through the thickness of the arch 
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Figure 4. Variation of transverse displacement along the length of the arch 

 

 
Figure 5. Variation of axial stress through the thickness of the arch 

 

 
Figure 6. Variation of axial stress along the length of the arch 
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Figure 7. Variation of transverse shear stress through the thickness of the arch 

 

 
Figure 8. Variation of transverse shear stress along the length of the arch 

 

6   CONCLUSIONS  
In this paper, a trigonometric curved beam theory considering the effects of 

transverse shear and normal stresses is applied for the static flexural analysis of 

two hinge arches made up of functionally graded composite materials. The 

principle of virtual work is employed to derive the governing equations. The 

Navier’s technique is used to obtain the results of the flexural analysis of simply 

supported FG composite arches. The effects of the power law coefficient and 

radius of curvature on the displacements and stresses are discussed. Based on 

the numerical results and discussion, it is concluded that the present theory 

predicts excellent results of displacement and stresses in FG composite arches 

subjected to uniform load. The transverse displacement increases with an 

increase in the power law coefficient due to the increase in flexibility. Increase 

in power law coefficient increases axial stress in tension zone. It is also 
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concluded that the increase in power law coefficient shifted the neutral axis of 

the arch in tension zone. Finally, it is recommended that the EBT and FSDT are 

not accurate to predict flexural response of thick arches made up of advanced 

composite materials.  Therefore, for the accurate flexural analysis of advanced 

composite arches, it is necessary to consider the effects of both transverse shear 

and normal stresses.    
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