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ABSTRACT: This paper leads with the phenomenon of the bouncing of a 

vehicle due to an irregularity being on a road or on a bridge-deck. Attention is 

focused on the determination of the critical velocity for which the vehicle loses 

touch with the road’s or the bridge-deck’s surface following a missile’s orbit 

and then striking on the road or the bridge during landing. If the vehicle moves 

with a velocity greater than the above critical one, we determine the 

corresponding time (and thus the point of the bridge) at which touch is lost.  

Afterwards, we determine also the landing point of the vehicle. 
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1 INTRODUCTION 
A lot of work has been reported during the last 100 years dealing with the 

dynamic response of railway bridges and later of highway bridges, under the 

influence of moving loads. Extensive references to the literature on this subject 

can be found in the excellent Frýba’s book (1972). 

Two early contributions, in this area, presented by Stokes (1849) and 

Zimmerman (1896) are very interesting. In 1905, Krýlov gave a complete 

solution to the problem of the dynamic behavior of a prismatic bar acted upon 

by a load of constant magnitude, moving with a constant velocity. In 1922, 

Timoshenko solved the same problem but for a harmonic pulsating moving 

force. Another pioneer work on this subject was presented in 1934 by Inglis, in 

which numerous parameters were taken into account. In 1951, Hillerborg gave 

an analytical solution to the previous problem by means of Fourier’s method. 

Despite the availability of high speed computers most of the methods used 

today for analyzing bridge vibration problems are essentially based on the 

Inglis’s or Hillerborg’s early techniques. Relevant publications are Saller’s 

(1921), Jeffcot’s (1929), Stending’s (1934) ,Honda’s and others’(1982), 

Gillespi’s (1993), Green’s and Cebon’s (1994), Green’s and others’ (1995), 

Zibdeh’s and Reckwitz’s (1996), Lee’s (1996), Michaltsos’s and others’ (1996), 

Xu’s and Genin’s (1997) , Foda’s and Abduljabbar’s (1998), Michaltsos (2001) 

and (2002). 

On the other hand, in practice, in spite of the great number of works for over 
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50 years, bridges (as also other constructions which are acted upon by dynamic 

loads) have been designed to account for dynamic loads by increasing the 

design live loads by a semi-empirical “impact factor” or “dynamic load 

allowance”. 

Recently, there have been many programs of research, discussing the effect 

of the characteristics of a bridge or a vehicle on the dynamic response of a 

bridge such as: the programs in U.S.A.(1977), in U.K. and Canada (1983), in 

the Organization for Economic Cooperation and Development (O.E.C.D.) 

(1992), in Switzerland  (1972) etc.   

Among the important studies in this field, we must especially refer to the 

important experimental research by Cantieri (1991dealing with different models 

of moving loads.  

From the three factors (vehicle speed, matching of bridge and vehicle natural 

frequencies and irregularities and roughness of bridge surface deck) which 

affect the vibration of a bridge, the third is the one which has been more studied 

in the last years, mainly by experimental methods. 

The literature counts in a lot of publications regarding the influence of deck 

roughness on the dynamic  behavior  of  a  bridge,  but  it  is  rather  poor in 

number on the discussion of the irregularities’ effect on the vehicles’ and also 

on the bridge’s dynamic behavior. 

We must refer to the studies of Chompooming and Yener (1995), that 

examines the influence of  roadway surface irregularities and vehicle 

deceleration on bridge dynamic using the method of lines, which also ascertains 

the influence of the irregularities on the vehicle bouncing, Duaij et al. (1999), 

that examines the developed maximum acceleration of a moving single span 

bridge because the movement of a vehicle on even and uneven decks, of 

Michaltsos and Konstantakopoulos (2000), that studies the influence of an 

irregularity and the produced impact forces on the dynamic behavior of a 

bridge, of Pesterer and others (2004), that develops a technique to predict the 

dynamic contact forces arising after passing road surface irregularities by a 

vehicle, and finally of Stancioiu and others (2008), that examines the effect of 

bouncing of a moving oscillator on the vibrations of a beam. 

In our earlier paper (Michaltsos – Konstantakopoulos 2000), was studied the 

influence of an irregularity on the dynamic behavior of a bridge under the 

assumption of a continuous touch vehicle and deck-surface. 

The present paper examines the effect of an irregularity (lain on a road or on 

a bridge) on the vehicle behavior and also on the dynamic response of a bridge, 

without the above mentioned assumption.. Therefore, an irregularity with even 

entrance has been chosen and the two characteristic values of the vehicle’s 

velocity are determined. The first, above which the touch between vehicle and 

road or bridge deck surface is lost and therefore the vehicle flies like a missile 

launched, and the second, over whose the flying vehicle is landed beyond the 

end of the irregularity. 
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A 2-DOF model is considered for the solution of the bridge, while the 

theoretical formulation is based on a continuum approach, which has been used 

in the literature to analyze such bridges.           

 

2.   ANALYSIS 

2.1.  Irregularity on road 

2.1.1.  Assumptions 

1. We assume that a mass-load, carried on a system of spring of constant ko 

and of a damper of constant co, moves on the road with constant velocity 

x  (figure 1). 

At instant t=0, it meets the irregularity AB the shape of which is given by 

the equation 

    )x(ww o                                                 (1) 

2. Because of the limited length of such an irregularity, compared to the bridge 

length, one can assume that the velocity  x  remains constant during 

crossing the irregularity. 

3. Depending on the value x of the velocity, the mass-load may either move 

in touch with the road (and the surface of the irregularity) or take-off 

following an orbit like the one of a missile-launched, and finally to land on 

point Δ (figure 1).    

4. During flying the mass mo of the wheel will be vibrating free, being hanged 

from the mass M, the orbit of which will be considered as the reference 

level for the above vibration of mo. 

 

2.1.2.  Mathematical formulation 
The total force acting on the road is: 

)wg(m)zg(MF oo
                                           (2) 

Cutting at point G (figure 1a), and taking into account the equilibrium of forces, 

we get: 

)wz(c)wz(kzM oooo
                                        (3) 

Due to equation (3) equation (2) becomes: 
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On the other hand, because 0)x(wo  , equation (3) may be written as follows: 
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Figure 1.  Irregularity AB on road crossed by a mass-load 

 

The solution of equation (5), with initial conditions 0)0(z)0(z   , is given by 

the Duhamel’s integral: 
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Finally, equation (4), becomes: 
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During the irregularity crossing, the mass-load takes the tangential speed o  

(fig.1), that is given by the following relation: 
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The irregularity’s radius of curvature is: 
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developed centrifugal acceleration will be:  

   
2/52

o

o2
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w




                                           (9) 

The developed centripetal force, which causes the deviation of the vehicle is 

coc )mM(F  , or finally: 
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The restoring weight-force FR, is given by the following relation: 

2/12
o

R
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F
cosFF


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and therefore, the condition for a safe crossing of the irregularity without lost of 

the touch between wheel and road surface will be:   

 cR FF                                                      (12) 

with F, given in equation (7). 

From the above equation (12), we find the first critical speed rc1 ,  which 

determines the vehicle’s behavior.  On the other hand, from equation (12), for a 

known speed rc1x  , one can find the time tcr and the point Γ of the vehicle’s 

take-off , through the relation: xrctx  . At point )w,x(  , the vehicle 

loses the touch and thus follows an orbit like the one of a missile launched with 

initial speed o  at initial angle  (figure 1). The equations of the orbit, in 

parametric form, are the following:  
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A vehicle moving with a speed greater than a value (depended on the 

irregularity’s form), it will land beyond the point B, end point of the 

irregularity. This speed is an important parameter, that from now-on we will 

call “second critical speed”  rc2 .  rc2 .  Eliminating the time t from the first 

of equations (13) we get: 
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Putting x=e and h=0 the above equation gives the 2
nd

 critical speed as follows: 
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Figure 2.  The orbit of a vehicle moving by speed greater than rc2  

 

The vehicle will arrive on point Δ in time tΔ, which is obtained by the solution 

of the following equations: 
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Thus, the point Δ, on which the vehicle lands, is determined by the relations: 

rc2xrc2xox for,0handfor),t(wh,tx      (17) 

 

2.2    Bridge’s  irregularity  
2.2.1  Assumptions 

In addition to the assumptions of §2.1.1, the following ones are considered: 

1. We assume that on the deck of a single-span beam there is the irregularity 

AB of length e, that starts at point A (x=xA) and ends at point B (x=xA+e). 

The above irregularity has a form given by equation (1). 

2. A mass-load like the one described in §2.1 moves on the beam with constant 

velocity.  

3. The mass M, before its entering on the beam, is moving on the level a-a, 

from which are measured its displacements (figure 3a).  

4. Moreover we assume that the mass-load enters the irregularity normally, i.e. 

without the appearance of impact forces. 

5. Finally, we assume that the irregularity does not affect the beam’s 

characteristics (I and m), and that the critical speeds rc1  and rc2  can be 

determined by using equations (12) and (17) respectively. 
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Figure 3.  Bridge irregularity AB 

 

2.2.2   Mathematical formulation 
The acting forces on a bridge having at oxx  an irregularity are: 

a. The force of the moving load as it is disturbed when it enters the 

irregularity: 

wmgm)zg(M])ww(g[m)zg(MF oooo
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b. The impact force when the load exits the irregularity and so a speed   is 

added: 
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Then the equations of motion will be:  
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where: 
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Figure 4.  Impact velocity and impact angle  
 

Clearly, a closed form solution of equations (20a) is not possible. However, one 

can seek approximate solutions, based on previous pertinent works (Kounadis 

1985). 

 

3.   NUMERICAL EXAMPLES AND DISCUSSION  
The purpose of this paper is to study the influence of the following parameters 

on the dynamic response of a bridge:   

 a)  The shape and the position on the road or on the bridge of an irregularity. 



Konstantakopoulos                                                                                                          23 

b)  The model used, its constant of spring, and the critical velocity on which the 

vehicle strikes (or not) on the bridge. 

One should note also the following: 

- The vehicles are supposed to move along the center line of the bridge. 

- The displacements in the middle of the span of the bridge are determined. 

- For the bridge’s oscillations only the six first flexural modes are taken into 

account. 

 

3.1    Data 
3.1.1 Type of irregularity 

The type of irregularity used, is shown in figure 5, while its form is given by the 

following equation (see and figures 1 and 2): 

2
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
                       (18) 

Two types of irregularity of the above form are used. The type 1, a rather 

smooth irregularity, with a=2.50m and f=0.10m, and the type 2, a rather sharp 

one, with a=2.50m and f=0.30m. Considering their position on each quarter of 

the span of the bridge, we studied their effect on the behavior of the bridge.  

  

 
α α 

f 
x  

 
Figure 5.  Shape of the irregularities used 

 

3.1.2  The vehicle 
As it is proved [5], for a wheelbase smaller than the 1/6 of the bridges span, one 

can use, without loss of the accuracy, the one-axis model instead of the real 

with two-axes. In this paper we use a light vehicle with the following data:    

M=200kg,  mo=20kg,  ko=2000dN/m,  co=100dN sec/m.  The vehicle’s velocity 

used depends on the irregularity shape or, in other words, on the velocities 

rc2rc1 and,  . 

 

3.1.3  The bridge 

We consider a one-span bridge of length andm65.0I,m100
4

  

m/kg1000m  . 
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3.2    Irregularity on road 

3.2.1  Irregularity of type 1 

Let us consider now that the vehicle of §3.1.2 moving on a flat road with 

constant velocity x , meets an irregularity of type 1. 

From equations (12) and (15) we find respectively: ,sec/. m616212rc1   and 

sec/. m297315rc2  . 

1. We assume that the vehicle moves with velocity: rc2xrc1 m14  sec/ . 

Thus, according to equation (12), the vehicle will lose the touch with the 

road at point  Γ with: ,. m4952x   at time sec1997.0t  , while according to 

equation (17) it will land on point Δ (within the irregularity) with  

,m5666.3x   at time  sec.254760t  . 

2.  We assume now, that the vehicle moves with velocity rc2x m25  sec/ .  

 Thus, according to equation (12), the vehicle will lose the touch with the 

road at point  Γ with: ,m2549.1x  at time sec0502.0t  , while according to 

equ. (17) it will land on point Δ (beyond the end of irregularity) with  

,m7268.9x   at time  sec3891.0t  . 

 

3.2.2  Irregularity of type 2 

We consider now that the vehicle of §3.1.2 moving on a flat road with constant 

velocity x , meets an irregularity of type 2. 

From equations (12) and (15) we find respectively: sec/m5173.7
rc1
  and 

sec/m9872.8
rc2
 . 

1. We assume that the vehicle moves with velocity sec/m14x  , which in the 

present case is rc2x  .  Thus, according to equation (12) the vehicle will 

lose the touch with the road at point Γ with: m28981x . at time 

sec09213.0t 


, while according to equation (17) it will land on point Δ 

(beyond the end of the irregularity) with  m17979x .  at time  sec6557.0t  . 

2.  We assume now that the vehicle moves with velocity rc2x
sec/m25  .  

According to equation (12), the vehicle will lose the touch with the road at 

point  Γ with: m12521x . at time sec.045010t  , while according to equ. 

(17) it will land on point Δ (beyond the end of irregularity) with  

m9799.24x   at time sec9992.0t  . 

 

3.3   Irregularity on bridge 
We will study the above two types of irregularity (see §3.1.1), which lie on the 

bridge and whose their start A is located on points 4/3,2/,4/  . 
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For each one of the above irregularities we will study the influence on the 

dynamic behavior of the bridge for the cases of an under critical speed and of an 

overcritical one, especially the influence of the developed impact forces.. 

 

3.3.1   Irregularity of type 1 

The diagram of figure 6 shows the oscillations of the middle of the bridge 

produced by a vehicle moving with velocity υx =10 m/sec (under critical speed), 

or  υx =25m/sec (overcritical speed).  

 Note also that for υx =10 m/sec the position of the irregularity strongly 

affects the above deflections. The more unfavorable positions are around the 

middle of the bridge.  

We ascertain, for υx =25m/sec, that the interposed time of  about 0.339 sec, 

during which the bridge performs free vibrations (due to the flight of the 

vehicle), decreases the influence of the vehicle impact and, of course, the 

amplitude of the deflections of the bridge.  
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Figure 6.   Irregularity of type 1 ( a=2.5,  f=0.1)  xo=L/4 ( ___ ), xo=L/2 ( …. ), xo=3L/4  (----- ) 

for  ko=2000,  co=100 
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Figure 7.  Irregularity of type 1 ( a=2.5, f=0.1)  Deformations of the middle of the bridge for   

ko=2000 ( ___ ), ko=1000 ( ….. ), ko=500 (--- ), co=100, xo=L/2   

 
The diagram of figure 7 shows the influence of the spring constant ko on the 

oscillations of the middle of the bridge produced by a vehicle moving with 
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velocity υx =10 m/sec (under critical speed) or υx =25m/sec (overcritical speed), 

and an irregularity with 2/xo  . We see that for υx =10 m/sec and stiffer 

springs increase the deflections up to 80%, while for υx =25m/sec the influence 

is negligible. 

 

3.3.2  Irregularity of type 2 

The diagram of figure 8a shows the oscillations of the middle of the bridge 

produced by a vehicle moving with velocity υx =7 m/sec (under critical speed).  

Clearly the deflections are increased from 1.5 times (for 4/3xo  ) to 3 times 

(for 2/xo  ) the deflections of the middle of the bridge with a deck without 

irregularity. The more unfavorable positions are around the middle of the 

bridge, while favorable ones are around the third quarter of the span of the 

bridge.  

The diagram of figure 8b shows the oscillations of the middle of the bridge 

produced by a vehicle moving with velocity υx =25m/sec (overcritical speed).  

We see that though the interposed time of  about 0.9542 sec (during which 

the bridge performs free vibrations because of the flight of the vehicle) is 

greater in the present case, it is not able to  decrease the influence of the vehicle 

impact and, of course, the amplitude of the deflections of the bridge.  

On the other hand we observe that due to the longer flight, the influence of 

irregularities (lain beyond the middle of the bridge) is smaller while it becomes 

negligible for 2/3xo  . 
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                           a)   υx =7 m/sec                                                          b)  υx =25 m/sec 

Figure 8.  Irregularity of type 2 ( a=2.5,  f=0.3)  xo=L/4 (___ ), xo=L/2 ( …. ), xo=3L/4  (-----) for  

ko=2000,  co=100, υx =7 m/sec 

 

The diagram of figure 9a shows the influence of the spring constant ko on the 

oscillations of the middle of the bridge produced by a vehicle moving with 

velocity υx =7 m/sec (under critical speed) and an irregularity with 

2/xo  .We see that, in this case of a sharp irregularity, the stiffer springs 

increase much more (up to 150%) the deflections.  

Finally, the diagram of figure 9b shows the influence of the spring constant 

ko on the oscillations of the middle of the bridge produced by a vehicle moving 
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by velocity υx =25 m/sec (over critical speed).  Clearly the influence in this case 

is, also, negligible.  
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                           a)   υx =7 m/sec                                                       b)  υx =25 m/sec 

Figure 9.  Irregularity of type 2 (a=2.5,  f=0.3)  Deformations of the middle of the bridge for   

ko=2000 ( ___ ), ko=1000 ( ….. ), ko=500 (----), co=100, xo=L/2 and υx =7 m/sec 

 

4.  CONCLUSIONS 
 From the results of the model considered, one can draw the following 

conclusions: 

1. Two velocities, the rc2rc1 ,  , that are depended on the shape of the 

irregularity and produce the take-off or not of a vehicle moving on the bridge, 

are determined. 

2. The influence of the existence of the irregularity on the developed deflections 

of the bridge is significant even if the vehicle moves with velocity less than 

the rc1 . 

3. If a vehicle moves with velocity greater than rc2rc1 and,  , loses touch with 

the  deck-bridge and flies following an orbit like the one of a launched 

missile. At the end of this flight, the vehicle lands with impact on the bridge.  

The so-developed impact forces produce deflections much more greater than 

the ones caused by the same vehicle crossing the same irregularity without 

taking into account the loss of touch with the bridge. 

4. The value of the spring constant ko affects the dynamic behavior of the 

bridge. Soft springs produce small oscillations while stiffer ones may 

increase the amplitude of oscillations up to 80%. 

5. The position of the irregularity strongly affects the deformation of the bridge.  
 

For under critical velocities the more unfavorable positions are around the mid-

span of the bridge while the favorable ones are around the third quarter of the 

span of the bridge. For overcritical velocities the unfavorable positions remain 

the same, but the increase of the oscillation amplitudes is much more higher, 

while the influence of irregularities (lain beyond the 5/3  of the span) is 

practically negligible. 
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