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ABSTRACT:  This work deals with the linear dynamic response of simply 

supported light (steel) bridges with negative sag under moving concentrated or 

distributed mass-loads of constant magnitude and velocity. The present analysis 

focuses on the determination of the influence limits of both the concentrated 

and the distributed mass-loads on the bridges’ vibration in relation to their 

velocity and to the sag magnitude of the bridge. The individual and coupling 

effect of these parameters on the dynamic response of the bridge are thoroughly 

discussed herein. A variety of numerical examples allow one to draw important 

conclusions for structural design purposes.  
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1 INTRODUCTION 
The study of the influence of dynamic loads on elastic structures is a very old 

and complicated problem. The determination of the dynamic effect of moving 

loads on elastic structures and particularly on bridges is very complex. Many 

systems in civil engineering design, and especially bridges can be idealized as a 

flexible beam under a moving mass. The existence of a moving mass causes 

non-linearity and makes the problem particularly difficult.  

A number of works have been reported during the last 100 years aiming to 

present reliable solutions for such a multi-parameter problem by using two 

different methods: the first one is to perform tests and the second is that of a 

pure theoretical investigation. In recent years, transport engineering has 

experienced serious advances characterized by increasingly higher speeds and 

weights of vehicles, which result to developed vibrations and dynamic stresses 

much larger than ever before. From a historical viewpoint, the problem of 

moving loads was first approximated for the case where the mass of the girder 

is negligible compared to the mass of a moving single load with constant 

magnitude [1-3].  

Another extreme case where the mass of the moving load is negligible 
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compared to the mass of the girder was originally studied by Krylov [4] and 

later by Timoshenko [5] and Lowan [6]. A more complicated problem including 

both the above parameters, i.e., the mass-load and the mass of the girder, was 

also studied by other investigators among which one should mention the works 

by Steuding [7], Schallemcamp [8] and Bolotin [9]. A very thorough treatise on 

the dynamic response of several types of railway bridges crossed by steam 

locomotives was presented by Inglis [10], where harmonic analysis has been 

employed. Interesting analyses on similar bridge problems were also presented 

by Hilleborg [11] using Fourier’s analysis and by Biggs et al. [12] using the 

Inglis technique. The problem of the dynamic response of bridges under moving 

loads was reviewed in detail by Timoshenko [13], and later on by Kolousek 

[14]. The extended review reported by Fryba [15] in his excellent monograph 

on this subject should also be mentioned. These analyses have been extended to 

simple frames subjected to moving loads by Karaolides and Kounadis [16] and 

thereafter, to a two-bar frame under a moving load in which the effect of axial 

motion has been taken into account [17]. Some partial results regarding the 

effects of the mass of a moving load on the dynamic response of a simply 

supported beam were presented [18].  

In all the above studies, the response of vibrating beams and frames due to 

moving loads was established on the basis of standard dynamic analysis where 

the effects of centripetal force, Coriolis force and rotatory inertia, associated 

with the mass of the moving vehicle which follows the motion of the flexural 

vibrating beam has been neglected. A first study of the effect of centripetal and 

Coriolis forces of a single moving mass on the dynamic response of a light 

weighted bridge was presented through a pure analytical way in [19] by 

Michaltsos and Kounadis, while the effect of the above forces due to the motion 

of a vehicle was studied in [20]. The relatively previous existing studies used 

FEM and these forces are naturaly included without specific distinction, as foe 

example in [21]. 

A lot of studies followed, where the problem was analyzed through pure 

theoretical investigation, using finite element methods or experimental ones. 

Among them, one must mention the work of Majumder and Manohar [22] 

where the problem was studied via the finite element method to determine a 

possible loss of stiffness in beams caused by a moving dynamic load, the works 

of Dehestani et al. [23], Stancioiu et al. [24], Gonzalez et al. [25], and Nguyen 

and Tran [26] where several cases of beams subjected to various moving mass-

loads were studied. On the other hand, Billelo et al. [27], [28] studied the 

problem of a bridge under a moving mass through experimental investigation. 

The influence of a concentrated mass-load and a vehicle moving on a bridge 

while bouncing on an irregularity was studied by Michaltsos [29], where the 

critical speeds for the vehicle’s normal or not passage were also determined. Lu 

et al. [30] studied the frequency characteristics of a railway bridge subjected to 

moving trains, considering the trains’ mass. Karimi and Ziaei-Rad [31] studied 
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the problem of a beam with moving support, that is subjected to a moving mass. 

Dimitrovova [32] studied the influence of centripetal and Coriolis forces on a 

beam on elastic foundation.   

The present work deals with the linear dynamic response of a simply 

supported light-weighted (steel) bridge with negative sag under moving 

concentrated or distributed mass-loads with constant magnitude and velocity. 

This analysis focuses on the determination of the influence limits of both the 

concentrated and the distributed mass-loads on the bridges’ dynamic response 

with respect to their velocity and to the sag of the bridge. The individual and 

coupling effect of these parameters on the dynamic response of the bridge are 

thoroughly discussed herein A 2D model is considered for the solution of the 

bridge, while the theoretical formulation is based on a continuum approach, 

which has been used in the literature to analyze such bridges. A variety of 

numerical examples allow one to draw important conclusions for structural 

design purposes.  

 

2      MATHEMATICAL FORMULATION 

2.1  Basic definitions and assumptions 
 

 
Figure 1. Geometry and sign convention of a simply supported beam under moving mass-

loadings 

 

Let us consider the simply supported beam shown in Fig. 1, having a prismatic 

cross-section with constant mass per unit length m, flexural rigidity EI, and 

corresponding rotatory inertia JM, made from linear, homogeneous and isotropic 
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material and having an initial sag wo, which usually can be expressed by the 

parabola: 

x
L

f4
x

L

f4
)x(w o2

2

o
o                   (1) 

where fo is the sag magnitude at 2/Lx  , while it is entered in equation (1) 

with its sign. 

We note here that wo(x) is smaller than L/200 and therefore it is not 

necessary to follow the theory of curved beams. 

At  0t   either a concentrated or a distributed mass-load enters the beam, 

moving with constant speed υ and having mass M and rotatory inertia JM  

(concentrated mass-load) or mass m and Jm (distributed mass-load). 

 

2.2  The concentrated mass-load case 
These forces acting at the point x=a of the beam are the following [33] 

comprehensively depicted in figure 2: 

a. The external gravitational load   gMF                                  (2a) 

b. The external motive force          )t(P                 (2b) 
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Figure 2.  Analysis of the forces developing due to the traveling mass-load F=mg  

 

c. The vertical inertia force, being equal to: )]t,(w)t,(w[MA oV    (2c) 

d. The centripetal force which is given by: 
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e. The Coriolis force which can be written as follows: 
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f. The projection of the tangential inertia force AH on the vertical axis: 

     ])(w)t,(w[sM)ww(sMF ooAH                    (2f) 
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g. The moment My due to the rotator inertia of mass-load, given by the relation: 

     )](w)t,(w[JM oMy                             (2g) 

Neglecting the longitudinal deformations, the differential equations of the 

forced flexural vibrations of the bridge are given by the following equations: 
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Taking into account that because of eq (1) it is:  0www ooo   , and that for 

constant velocities it is 0s,s    the first of equations (3) can be rewritten 

as follows: 
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A series solution of eq(4) in terms of normal modes can be sought in the form: 

 
n

nn )t(T)x(X)t,x(w                                  (5) 

where Xn(x)  are the shape functions of the freely vibrating bridge, while Tn(t) 

are the corresponding time functions which have to be determined. 

Introducing the last expression of w(x,t) into eq(4), one obtains:   
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The freely vibrating bridge is governed by the following equation: 
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Because of eq(7b), eq (7a) becomes: 
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Multiplying eq (6c) by )nk(,Xk  and integrating from 0 to L one obtains: 
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Clearly, a closed form solution of equation (6d) is not possible. However, one 

can seek approximate solutions, based on previous work [20], [34]. 

A first approximate solution of eq(6d) is obtained by considering as loading the 

force Mg and by ignoring the damping term. This leads to: 
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Introducing the last expression into the right side of equation (6d), we obtain: 
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The solution of eq(7), with initial conditions 0)0,x(w)0,x(w    is given by the 

Duhamel’s integral: 



Konstantakopoulos & Michaltsos                                                                                    51 


















 


22
k

2
k

t

0

k
)t(

k
k

k

,
m2

c
:where

d)t(sine)(F
1

)t(T

             (8) 

 

2.3  The distributed mass-load case 
For the loading situation shown in Fig. 1c, one may find that: 
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as well as: 
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Substituting expressions (10a) and (10b) into eq (5) one gets: 
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A series solution of eq(9c) in terms of normal modes can be sought in the form: 
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where Xn(x) are the shape functions of the freely vibrating bridge, while 

)t(Pn are the corresponding time functions  to be determined. 

Introducing eq(10a) into eq(9c) and because of eq(1) one gets: 
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Because of eq(6a), the above equation becomes: 
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Multiplying the above by Xk  and integrating from 0 to L one obtains: 
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Following the procedure of §2, we consider as a first approximate function of 

)t(Pn  the one   corresponding to the dynamic response of the beam under a 

moving distributed load p(x)  with constant speed υ and without mass, as 

follows: 
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Introducing the last expression into the right side of eq (10d) and taking into 

account that t  one obtains:  



















   













   


  

 





 



L

0 n
nkn

b
t

0 n
nkn

M

t

0

t

0 n
nknk2

2
o

t

0 n
nkn

2
t

0 n
nkn

p

t

0
k

p
k

kk
2
kkk

dxPXX
mL

J2
dxPXX

mL

J2

dxPXX2dxX
L

fg
dxPXXdxPXX

mL

m2

dxX
mL

gm2
)t(G

:where,)t(GPP
m

c
P







(12) 

The solution of the first of eqs (12) with initial conditions 0)0,x(w)0,x(w   , 

is given by the Duhamel’s integral: 
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3 NUMERICAL RESULTS AND DISCUSSION 
Given that the influence of the Centripetal and Coriolis forces caused by a 

moving concentrated mass-load or a biaxial vehicle have been studied in detail 

through an analytical way firstly in [19], [20] and then by other investigators, 
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the purpose of this paper is: a) to study the effect of the sag, the centripetal and 

the Coriolis forces on the dynamic behavior of the bridge due to the action of a 

concentrated mass-load moving with constant velocity, b) to study the same 

effects for a distributed mass-load moving with constant velocity, and c) to 

present a comparison of the above effects and determine the range for each case 

of loading where each effect should be taken into account in relation to the sag 

of bridge. 

More specifically, a simply supported bridge of length equal to m100L   is 

chosen with mass per unit length mkg400m / , moment of inertia 

4
y m0.1I  and rotatory inertia per unit length mmkN4J 2

b /sec , representing 

a light-weighted bridge. The bridge is made from structural steel (isotropic and 

homogeneous material) with modulus of elasticity 28 m/kN101.2E   having a 

slight curvature with sag at its middle equal to 500/Lfo  or 200/Lfo  . 

 

3.1 The concentrated mass-load 
Let us consider now a concentrated mass-load, having a ratio mL/M as it is 

shown in Table 1 and a fixed rotatory inertia 2
M secmkN10J  . 

 

Table  1. Dynamic deformations due to a concentrated mass-load 

M/mL 0.2 0.4 0.6 0.8 

v 

(m/s) 

km/h 

 

Loading 

 

fo 

 

w 

 

fo 

 

w 

 

fo 

 

w 

 

fo 

 

w 

 

 

 

(20) 

72 

OW 0 0.0885 0 0.1962 0 0.3235 0 0.4703 

OWC 0 0.0886 0 0.1971 0 0.3259 0 0.4748 

OWC1 -L/500 0.0881 -L/500 0.1961 -L/500 0.3243 -L/500 0.4728 

OWC2 -L/200 0.0873 -L/200 0.1946 -L/200 0.3221 -L/200 0.4697 

D1%  0.132  0.461  0.734  0.961 

D2%  -0.569  -0.510  -0.462  -0.422 

D3%  -1.423  -1.275  -1.156  -1.057 

 

 

 

(40) 

144 

OW 0 0.0888 0 0.2064 0 0.3572 0 0.5416 

OWC 0 0.0884 0 0.2060 0 0.3573 0 0.5424 

OWC1 -L/500 0.0864 -L/500 0.2023 -L/500 0.3519 -L/500 0.5353 

OWC2 -L/200 0.0836 -L/200 0.1969 -L/200 0.3438 -L/200 0.5249 

D1%  -0.465  -0.185  0.020  0.165 

D2%  -2.193  -1.782  -1.507  -1.308 

D3%  -5.470  -4.450  -3.764  -3.267 

 

 

 

(60) 

216 

OW 0 0.1058 0 0.2389 0 0.4032 0 0.5995 

OWC 0 0.1078 0 0.2551 0 0.4468 0 0.6833 

OWC1 -L/500 0.1027 -L/500 0.2452 -L/500 0.4323 -L/500 0.6642 

OWC2 -L/200 0.0949 -L/200 0.2305 -L/200 0.4107 -L/200 0.6357 

D1%  1.900  6.764  10.80  13.98 

D2%  -4.812  -3.867  -3.239  -2.791 

D3%  -11.98  -9.641  -8.082  -6.968 
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At 0t  , where the bridge is at rest, the concentrated mass-load enters the 

bridge with constant velocity υ. The studied velocities of the moving load vary 

from )h/km72(sec/m20  to sec/m60   )h/km216( , which corresponds from a 

slow to a super fast train. 
Three cases of loading have been studied. The first one is denoted by OW, 

where is taken into account only the influence of mass M of the load. The 

second case is denoted by OWC, where the influence of the mass of the load 

and the Centripetal and Coriolis forces are taken into account. The third and 

fourth load cases denoted by OWC1 and OWC2 are similar to the OWC case 

where initial sag at mid-length 500/Lfo   and 200/Lfo   are also included 

in the analysis. 

In addition, in Table 1 the following percentages are shown: 

.%
OWC

OWC2OWC
2D,%

OWC

OWC1OWC
2D,%

OW

OWOWC
1D








  

The results of the above study are tabulated in the following Table 1.  

From the above table the notable influence of Centripetal and Coriolis forces 

is verified once again, which increases the dynamic deformations of the bridge 

from ~0.13% for low speeds and values of M/mL up to  ~14% for high speeds 

and high values of M/mL. 

On the other hand, one can see that a negative curvature decreases the 

deformations from ~0.60%  to ~12% for low speeds and values of M/mL, while 

this decrease is less than the previous case, ranging from 0.40% to 7%  for high 

speeds and values of M/mL. 

Characteristic plots of the dynamic response of the bridge are shown in Figs 

3 to 6.    
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        a.  υ=144 km/h                                                 b.  υ=216 km/h 

Figure  3.  Dynamic deformations of the middle of the bridge for  M/mL=0.2,  fo=--L/200 without 

mass forces: black,   OW: red,  OW+OWC: green,  OW+OWC+OWC2: blue 
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             a.   υ=144 km/h                                                   b.  υ=216 km/h 

Figure 4.  Dynamic deformations of the middle of the bridge for  M/mL=0.4,  fo=--L/200 without 

mass forces: black,   OW: red,  OW+OWC: green,  OW+OWC+OWC2: blue 
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a.   υ=144 km/h                                                   b.  υ=216 km/h 

Figure 5.  Dynamic deformations of the middle of the bridge for  M/mL=0.6,  fo=--L/200 without 

mass forces: black,   OW: red,  OW+OWC: green,  OW+OWC+OWC2: blue 
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                              a    υ=144 km/h                                        b.  υ=216 km/h 

Figure 6.  Dynamic deformations of the middle of the bridge for  M/mL=0.8,  fo=--L/200 without 

mass forces: black,   OW: red,  OW+OWC: green,  OW+OWC+OWC2: blue 

 

3.2  The distributed mass-load 
Let us consider now a distributed mass-load, having a ratio Lm/mp  as it is 

shown in Table 2 and fixed rotatory inertia 2
m secmkN1J  .  
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At 0t  , where the bridge is at rest, the distributed mass-load enters the bridge 

with constant velocity υ.  

The studied velocities of the moving load, the cases of loading and 

percentages are the same as in §3.1 and the obtained results of this study are 

shown in Table 2.   The obtained results from the above study, shown in Table 

2, concerning the passage of a distributed mass-load, are quite different from 

those for the passage of a concentrated mass- load. The Centripetal and Coriolis 

forces have negligible influence on the dynamic response of a steel bridge 

regardless of the ratio mp/m and the velocity of the moving load. 

 
Table 2.  Dynamic deformations due to distributed mass-load 

mp/m 0.1 0.2 0.3 0.4 

v 

(m/s) 

km/h 

 

Loading 

 

fo 

 

w 

 

fo 

 

w 

 

fo 

 

w 

 

fo 

 

w 

 

 

 

(20) 

72 

OW 0 0.0310 0 0.0744 0 0.1300 0 0.1981 

OWC 0 0.0295 0 0.0714 0 0.1257 0 0.1923 

OWC1 -L/500 0.0294 -L/500 0.0711 -L/500 0.1252 -L/500 0.1917 

OWC2 -L/200 0.0291 -L/200 0.0706 -L/200 0.1245 -L/200 0.1907 

D1%  -4.837  -3.984  -3.373  -2.914 

D2%  -0.538  -0.445  -0.379  -0.331 

D3%  -1.347  -1.114  -0.949  -0.828 

 

 

 

(40) 

144 

OW 0 0.0289 0 0.0656 0 0.1101 0 0.1622 

OWC 0 0.0281 0 0.0643 0 0.1084 0 0.1606 

OWC1 -L/500 0.0275 -L/500 0.0630 -L/500 0.1065 -L/500 0.1581 

OWC2 -L/200 0.0265 -L/200 0.0611 -L/200 0.1036 -L/200 0.1542 

D1%  -2.678  -1.977  -1,409  -0.938 

D2%  -2.283  -1.998  -1.776  -1.599 

D3%  -5.708  -4.995  -4.440  -3.997 

 

 

 

(60) 

216 

OW 0 0.0282 0 0.0616 0 0.1007 0 0.1453 

OWC 0 0.0281 0 0.0622 0 0.1026 0 0.1493 

OWC1 -L/500 0.0266 -L/500 0.0592 -L/500 0.0981 -L/500 0.1434 

OWC2 -L/200 0.0244 -L/200 0.0548 -L/200 0.0916 -L/200 0.1346 

D1%  -0.401  0.803  1.855  2.751 

D2%  -5.280  -4.734  -4.292  -3.926 

D3%  -13.19  -11.83  -10.73  -9.814 

 
In some cases, these mass-forces are mitigating to the dynamic response of the 

bridge. In any case their influence is very little ranging from -2% to 1%. 

Only for very heavy trains crossing the bridge with high speeds (>200 

km/h), one can observe an enhanced influence of the dynamic response of the 

bridge, which in any case varies from about 0.8% to about 4%.   

The negative curvature that is applied for this loading case, decreases the 

deformations: 

from 1.3% (low speeds) to 14% (high speeds) for the ratio mp/m=0.1,  

from 1.1% (low speeds) to 12% (high speeds) for the ratio mp/m=0.2,  
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from 0.9% (low speeds) to 11% (high speeds) for the ratio mp/m=0.3,  

from 0.8% (low speeds) to 9.5% (high speeds) for the ratio mp/m=0.4. 

Furthermore, it is observed that the small curvatures –L/500 produce also 

notable decrease of the deformation.  

Characteristic plots are shown in Figures 7 to 10.    
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a.   υ=144 km/h                                                 b.  υ=216 km/h 

Figure 7. Dynamic deformations of the middle of the bridge for  mp/m=0.1,  fo=--L/200 without 

mass forces: black,  OW: red,  OW+OWC: green,  OW+OWC+OWC2: blue 
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                            a.   υ=144 km/h                                                   b.  υ=216 km/h 

Figure 8.  Dynamic deformations of the middle of the bridge for  mp/m=0.2,  fo=--L/200 without 

mass forces: black,   OW: red,  OW+OWC: green,  OW+OWC+OWC2: blue 
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a.    υ=144 km/h                                           b.  υ=216 km/h 

Figure 9.  Dynamic deformations of the middle of the bridge for  mp/m=0.3,  fo=--L/200 without 

mass forces: black,   OW: red,  OW+OWC: green,  OW+OWC+OWC2: blue 
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                             a.    υ=144 km/h                                                  b.  υ=216 km/h 

Figure 10.  Dynamic deformations of the middle of the bridge for  mp/m=0.4,  fo=--L/200 without 

mass forces: black,   OW: red,  OW+OWC: green,  OW+OWC+OWC2: blue 

 

4   CONCLUSIONS   
From the results of the bridge model considered herein, one can draw the 

following conclusions: 

●   For the case of a concentrated mass-load, it is verified that the influence of 

the mass-forces is significant and that one has to take them into account. 

Besides the influence of the inertia force of the moving mass, one must add 

the Centripetal and Coriolis forces as well as the rotator inertia of the mass-

load that have an additional influence ranging from 0.4% to 15%. A small 

negative sag 500/Lfo   decreases the dynamic deformations from 0.5% to 

4%, while a bigger sag 200/Lfo  decreases the dynamic deformations 

from 1.5% to 12%. The value of the last sag for the studied bridge of length 

m100L  is  m5.0fo  . It is clear that one can build bridges with bigger 

curvatures, taking always into account the necessary convenience of the 

passing vehicles. 

●  For the case of a distributed mass-load, it is observed that the most 

significant term, which has the biggest influence on the dynamic behavior of 

the bridge, is the one expressing the inertia forces of the distributed mass-

load, while the terms expressing the Centripetal and Coriolis forces do not 

cause significant additional dynamic deformations. Indeed, for a wide range 

of moving masses and velocities their presence is rather relieving. Only for 

extreme values ( 4.0m/mp   and h/km200 ) the loading with 

distributed mass-loads shows an increase in dynamic deformations in the 

order of about 4%. The curvatures, for this kind of loads, significantly 

decrease the dynamic deformations of the bridge. This reduction amounts 

from to ~0.3%  to ~4% for 500/Lfo   and from to ~1.0%  to ~14% for 

200/Lfo  .  

●   It is interesting to explain why the bridge presents such a response under the 

action of concentrated mass-load which is quite different than the response 



Konstantakopoulos & Michaltsos                                                                                    59 

under the action of distributed mass-load. Indeed, one can observe that in the 

case of a distributed moving mass-load, this type of loading does not cause 

an increase of the dynamic deformations of the bridge (such as the 

concentrated mass-load), but on the contrary it causes as slight decrease. In 

order to investigate this phenomenon one can observe the plots of figures 3 

to 6, where it is shown that when the concentrated mass-load moves on the 

first half of the bridge the Centripetal and Coriolis forces cause a decrease of 

the bridge’s deformations regardless of mass magnitude and velocity, and 

only when the load enters the second half the above forces start causing an 

increase of the bridge’s deformations. Probably, this is due to the fact that 

when the distributed moving mass-load enters the second half span, the first 

half is still loaded and participating in the movement of the bridge. 
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