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ABSTRACT: Step-by-step solution strategy for segmental prestressed concrete 

bridge calls for: (i) time dependent effects of creep and shrinkage of concrete, 

and relaxation of prestressed steel; (ii) losses due to friction and anchor setting 

of prestressing tendons; (iii) sequence of construction, and change of geometry 

and support conditions; (iv) tension stiffening effect of concrete after cracking; 

(v) effects of nonprestressed steel on the redistribution of stresses.  These 

significant parameters have been accounted for to obtain the time dependent 

serviceability analysis of several segmental prestressed concrete bridges over 

the Nile River utilizing Eurocode specifications. Redistribution of stresses in 

concrete, prestressed as well as nonprestressed steels due to time-dependent 

effects during construction and after a long time of operation is one of our 

objectives.  Such redistribution of stresses/moments produced by time 

dependent analysis is to be place in an intermediate state between the analyses 

obtained from two different cases: (a) adding all partial stresses for each 

construction step using corresponding statical system; (b) assuming all loads 

and prestress forces to be applied on the final statical system. This paper is to 

report on estimated contributions of each of the two time-independent cases in 

order to minimize the difference with results obtained from the time-dependent 

analysis.  To this end, a number of robust, and computationally efficient, 

algorithms are presented and integrated through software ESTMATOR, which 

casts the optimum parameters as a minimum-error nonlinear optimization 

problem with constraints and solves it with the sequential quadratic nonlinear 

programming technique. 
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1 INTRODUCTION 
Significant progress has been made over the years in the development of step-

by-step methodologies to account for the time dependent effects in the analysis 

of segmental prestressed concrete bridges. Article on design, analysis, and 

construction of segmental bridges have been published by many researches and 
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comparisons are made between the analytical results and the measured 

responses of actual structures [e.g., 1, 2].  Attention is also given on the 

deformations and internal moment redistribution due to creep and shrinkage of 

concrete when the structural system is changed during construction [3-5].  In 

particular, Bishara and Papakonstantinou [3] investigated the time dependent 

deformation of cantilever construction bridges before and after closure.  Cruz et 

al. [6] introduced a nonlinear analysis method to calculate the ultimate strength 

of bridges.   

The development of sophisticated computer programs for time dependent 

analysis of segmental bridges is a tedious task.  In addition to their limitations in 

wide use, because of the complexity of the practical applications, such programs 

require engineers with special skills.  Consequently, a simple formula for 

estimating the internal moment redistribution due to creep and shrinkage of 

concrete, which can be appropriate for use by design engineers, has been 

continuously required.  Trost and Wolff [5] introduced a simple formula which 

can simulate internal moment redistribution with a superposition of the elastic 

moments from each construction step.  A similar approach has been presented 

by the Prestressed Concrete Institute and Post-Tensioning Institute [7].  A 

simple equation has been introduced in [8] to calculate the internal moment 

redistribution in segmental bridges after completion of construction.  All these 

simplified formulae are developed on the basis of the combination of the 

summation the elastic moments occurred at each construction step,  oM , and 

the moment obtained by assuming that the entire structure is constructed in one 

step, cM  as 

 
  )( ocoT MMMM                             (1) 

where  ,which may take different forms, is basically a function accounting for 

concrete aging, and creep behavior.  Equation (1) can be rewritten in the 

different form as 

   coT MMM  1                                 (2) 

In this research, such form shown in Eq. (2) has been adapted to obtained 

moment redistribution due to dead load and prestressed considering the time 

dependent effects through optimization technique.  Knowing that the long term 

moment is a combination of the two cases: (a) summation of moments due to 

own weight and prestressing during bridge construction obtained from different 

statical system; (b) moment obtained as if the bridge is constructed in one step, 

the contribution of each of the two cases can be obtained by minimizing the 

difference between the results from the time dependent analysis and those 

provided by certain contribution from the two time-independent cases. 

The primary objective of this research is to develop a computationally 

efficient methodology to identify the estimated parameters needed to simulate 
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the redistribution of the stresses/moments obtained by the time dependent 

analysis from the conventional time independent analyses performed for the 

class of segmental prestressed bridges.  To this end, an integrated software 

program called ESTMATOR has been developed.  Its overall strategy is 

outlined as follows: (a) primal analysis tools; and (b) optimization technique of 

an error/cost function with sensitivity analysis.  With regard to item (a), we 

adopted step-by-step solution strategy for segmental prestressed concrete bridge 

which includes time dependent effects due to creep and shrinkage of concrete 

and relaxation of prestress steel, losses due to friction and anchor setting of 

prestressed tendons; sequence of construction and change of geometry and 

support conditions (if any); tension stiffening effect of concrete after cracking; 

and effects of nonprestressed steel on the redistribution of stresses.  The 

previously developed, step by step analysis, strategy [9] has been adopted here 

for shrinkage and creep of concrete utilizing Eurocode [10] and CEB-FIP 

Model Code [11].  In connection with item (b), the optimization module is used 

to cast the estimation of the parameters as a minimum-error, objective, 

nonlinear optimization problem, which is subsequently solved using the 

sequential quadratic programming technique [12-16].  Such optimization 

technique is based on an iterative formulation and solution of several quadratic-

programming sub-problems.  Each sub-problem may be obtained utilizing a 

quadratic approximation of the system Lagrangian and a linearization of the 

constraints at each iteration.  At present, this is known to be one of the best 

available, gradient-based, nonlinear optimization techniques.  Several features 

have also been incorporated into ESTMATOR to facilitate the estimation of the 

analysis parameters.  These include the following: (i) design variable 

formulation which includes variable grouping, i.e., active/passive variables, (ii) 

constraint formulation including variable bounds, (iii) general scaling of 

variables as well as objective function; and (iv) the use of quasi-Newton and 

line search techniques for solution enhancements.  In brief, the estimator tool is 

of the optimal strategy type, in which the nonlinear mathematical programming 

problem is solved utilizing a successive quadratic programming technique.  The 

overall program has been designed to be robust, reliable, easy-to-operate, and 

portable.   

An outline of the remainder of the paper is as follows.  In section 2, the 

evolution of material properties such as elastic modulus, creep, shrinkage, and 

relaxation has been briefly described according to design specifications 

Eurocode [10].  In section 3, the general step-by-step scheme accounting for the 

time-dependent effects in segmental prestressed concrete bridges is presented.  

Details of the stress update algorithm for instant as well as time-dependent 

effects are also given.  A brief description of the optimization technique 

developed is discussed in section 4.  Numerical results and simulations are 

presented in section 5.  These include time dependent serviceability analysis of 

two segmental pre-stressed concrete bridges over the Nile River.  Redistribution 
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of stresses/moments in concrete, pre-stressed as well as non-prestressed steels 

due to time-dependent effects during construction and after a long time of 

operation is investigated.  The optimization methodology developed has been 

utilized to identify the estimated parameters needed to simulate the 

redistribution of the stresses/moments obtained by the time dependent analysis 

from the conventional time independent analyses performed for the class of 

segmental prestressed bridges. Finally, a summary and conclusions are given in 

section 6. 

 

2 EVOLUTION OF MATERIAL PROPERTIES 
The evolution of material properties such as elastic modulus, creep, shrinkage, 

and relaxation has been briefly described according to design specifications and 

Eurocode [10].   

Starting with the elastic modulus of concrete, it can be calculate based on the 

compressive strength according to  
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where Ec is the modulus of elasticity of concrete at an age of 28 days (MPa), αE 

=2.15(10)
4
 (MPa), fcm the compressive strength of concrete at an age of 28 days 

(MPa), and fcmo = 10 (MPa). When an elastic analysis is performed, a lower 

value of the modulus of elasticity should be used to consider the initial plastic 

cracking due to plastic shrinkage.  It is suggested that this is done by decreasing 

the elastic modulus according to Ecs=0.85Ec, where Ecs is the secant modulus in 

the elastic range of concrete.  To take into account the age of concrete, the time 

dependent function may be used 
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where t is the age of concrete in days and s is a coefficient depending on the 

cement type and is equal to 0.20 for rapidly hardening cement for high strength 

concrete, 0.25 for normal and rapidly hardening cement and 0.38 for slowly 

hardening cement.  The creep coefficient can be calculated as 

 )(),( ocoo tttt    (5) 

Where φo is the notional creep coefficient, and βc(t-to) is the time function 

describing the developing of creep with time. The notional creep coefficient can 

be estimated as 
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and the time-development function is expressed as 
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In the above, RH is the relative humidity of the ambient environment in percent; 

t is the age of concrete is days at the moment considered, to is the age of 

concrete at loading in days; ho is the notional size of the member in mm which 

is equal to 2Ac/u, where Ac is the cross section area, and u is the perimeter of the 

member in contact with atmosphere. 

The total shrinkage strain, εcs, is composed of two components, the drying 

shrinkage strain, εcd, and the autogenous shrinkage strain, ca. The drying 

shrinkage strain develops slowly, since it is a function of the migration of the 

water through the hardened concrete.  The autogenous shrinkage strain develops 

during hardening of the concrete: the major part therefore develops in the early 

days after casting.  Autogenous shrinkage is a linear function of the concrete 

strength. It should be considered specifically when new concrete is cast against 

hardened concrete.  The drying shrinkage strain cd may be calculated from 
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where kh is a coefficient depending on the notional size h0, which has a value 

1.0 to 0.70 for ho equal to 100 to 500, respectively; t is the age of the concrete at 

the moment considered in days; ts is the age of the concrete (days) at the 

beginning of drying shrinkage (normally this is at the end of curing).  The basic 

drying shrinkage, cd,∞;can be expressed as  
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where ads1 and ads2 are coefficients depending on the cement type and are equal 

to 6 and 0.11, respectively for rapidly hardening high strength cement; 4 and 
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0.12, respectively for normal and rapidly hardening cement; and 3 and 0.13, 

respectively for slowly hardening cement. 

The autogenous shrinkage strain can be expressed as 

      
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t
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where: 

     610105.2  ckca f                                (13) 

where fck is the characteristic compression strength of concrete. 

The intrinsic relaxation suggested by Ghali and Trevino [17] based on 

experimental values given in the CEB-FIP Model Code [11] and the FIP report 

on prestressing steel [18] has been adopted here.  The expression for such 

intrinsic relaxation can be written as 
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where σpso is the initial stress of tendon at time to; k is a constant depending on 

the steel type (equal to 1.5 and 0.667 for stress-relieved and low-relaxation 

steels, respectively); t is a dimensionless coefficient depending on the length 

of the period (t-to) and is given by 
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In the prestressed members the stressed steel commonly experiences a 

constantly reduction of its stress level with time due to the effects of creep and 

shrinkage of concrete.  Thus, the actual relaxation, called reduced relaxation, is 

expected to be less than the intrinsic value. The reduced relaxation, pr , can 

be expressed as  

 
prrpr                                            (16) 

where the reduction coefficient,  
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fpu is the tensile strength of the tendon, and Δσps is the change in stress in tendon 

during a given period of time due to combined effects of creep, shrinkage and 

relaxation. This value does not known a priori as it depends on reduced 

relaxation, and therefore, iteration is necessary. 

 

3 TIME-DEPENDENT FORMULATION FOR SEGMENTAL 

PRESTRESSED CONCRETE BRIDGES 
A step-by-step scheme developed in [9] has been adopted here in this research 

to take into account the time-dependent effects in segmental prestressed 

concrete bridges.  The time for which the bridge is analyzed is divided into 

intervals, and the stress increment for each interval is assumed to occur in the 

beginning of such interval.  The bridge is modeled by an assemblage of linear 

non-prismatic elements. The conventional displacement-based element 

formulation has been utilized to calculate the incremental displacement and 

stress. Since the centroid of the reinforced concrete cross section changes its 

position with time due to varying its properties and cracking with time, the 

equations for calculating stress and strains have been written referred to an 

arbitrary reference point, O, which will be maintained constant through all steps 

of analysis.  If a homogeneous elastic cross section is subjected to a normal 

force, N, and bending moment, M, at its arbitrary reference point O, the strain at 

any point of distance y from the point O can be expressed as 

 yo    (19) 

where εo is the strain at point O, and κ is the curvature, i.e., the slop of strain 

diagram.  Stress distribution over the cross section can be calculated as σ=E ε 

(E is the Young’s modulus). The stress resultants, i.e., N and M, can be obtained 

by integrating the stress over the cross section as 
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Where A, Sz, and Iz are the cross section area, first and second moments of area 

about a transverse axis through point O, respectively. Alternatively, strain and 

curvature can be obtained in terms of normal force and bending moment as 
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The instantaneous strain in a composite section made of concrete parts with 

different properties and several layers of prestressed and nonprestressed steels, 

due to increment on normal force ΔN and bending moment ΔM given by 

  jext PNN  (22a) 



   92 Simplified computation of time dependent effects of segmental bridges 

 
jpsjext yPMM 
 
                              (22b) 

can be obtained by Eq. (21) assuming that the composite section is replaced by 

a transformed section composed of area of concrete parts plus area of steels, 

each multiplied by its modulus of elasticity and divided by a reference value 

Eref.  ΔNext and ΔMext, in Eq.(22), represent the change in the internal forces due 

to external loads and the statically indeterminate effects of the initial 

prestressing applied at the instant considered; Pj is the prestressing force of post 

tension j
th
 tendon located at distance ypsj below point O, after deducting the 

losses due to friction and anchor set. The instantaneous stress distribution for 

each concrete part and steel layer can be determined. In general, the distribution 

of stress of each concrete part can be represented by a straight line, which 

defined by two parameters; (i) stress value at reference point O, and (ii) slope of 

stress distribution dσ/dy.  If the total stress at the extreme tension fiber exceeds 

the concrete modulus of rupture, the section cracks.  In this case, the area of 

concrete in the tension side of neutral axis is ignored, and the internal force is 

carried out by concrete in compression zone and reinforcement in tension zone. 

The strain increment due to creep and shrinkage in an interval can be 

calculated from the stress applied in that interval and the proceeding ones. The 

creep of concrete are assumed to be linearly proportional to the applied stress; 

i.e., the stress increment Δfc applied and sustain for a period of time produce 

instantaneous and creep strain equal to )1( 
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, where Ec is the modulus of 

elasticity of concrete which is a function of age of concrete and time of applied 

stress increment, and φ is a creep coefficient which is function of age concrete 

at loading and duration of sustain stress.  If the time is divided into intervals 

during which the stress changes and creep and shrinkage occur freely, the 

change in concrete strain due to creep and shrinkage, during the i
th
 interval, is 

the difference of strain values calculated between time ti and t(i+1); i.e., 
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In the above, the first term is the creep strain caused by incremental stress Δfc(ti) 

introduced at time ti and ended at time t(i+1).  The second term is the sum up of 

the effect of creep strains between time ti and ti+1 due to stress introduced in 

proceeding time intervals.  The third term is the free shrinkage between ti and 

time ti+1. 

Once the two parameters, [Δεo(ti+1, ti), Δκ(ti+1,ti)]free, defining the strain 

distribution over each concrete part are know, the time dependent changes in 



Gendy & Rashed                                                                                                            93 

stress occurring in each concrete part and steel layer between ti and ti+1 can be 

determined.  The curvature Δκ(ti+1,ti)free can be obtained by Eq.(23) by replacing 

σ by dσ/dy and put Δεs equal to zero.  The hypothetical free strain in Eq. (23) 

can be prevented by introducing an artificial stress defined over concrete part j 

by stress by stress value at reference point O and slope as 
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where jiic ttE ),( 1  is the age-adjusted modulus of elasticity of concrete part j 

[19].  The sum of stress resultants over concrete parts (ΔN
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artificial stress can be determined from Eq. (20) as 
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Strain in concrete due to relaxation of prestressed steel can be artificially 

prevented by applying the summation of forces in the prestressed steel layers 

tensioned before or at time ti  as 
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where Apsk and ypsk are the cross section area and y-coordinate of k
th
 prestressed 

steel layer.  

Summing up the forces in Eq. (25, 26) gives (ΔN
restraint

, ΔM
restraint

), the total 

forces which would artificially prevent creep, shrinkage and relaxation.  The 

artificial strain can be eliminated by applying forces with the same magnitude 

but in opposite directions on an age-adjusted transformed section composed of 

area of concrete in each part multiplied by refc EE / , plus area of reinforcement 

multiplied by refs EE / .  Utilizing Eq. (21) with the properties of age-adjusted 

transformed section, such forces produce change in strain Δε(ti+1, ti) defined by 

its two parameters; i..e., (i) its value at reference point O, Δεo(ti+1, ti), and (ii) the 

slop of the strain distribution, Δκ(ti+1,ti).  Such strain can be multiplied by cE

of each concrete part gives the corresponding stress change.  The total stress 

increment, then, can be calculated by the sum of this stress with the stress 

obtained in Eq. (24a), i.e.,  
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Similarly, the change in stresses (between ti+1 and ti) in prestressed and 

nonprestressed steels can be given by 
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4 NONLINEAR OPTIMIZATION ALGORITHM 
As alluded to the previously section, the optimization scheme in ESTMATOR 

formulates an objective optimization problem from information specified in 

data files, for both time dependent analysis response and two time independent 

analysis cases (simulated responses), and then solves it by using a sequential 

quadratic nonlinear programming technique [13-15].  To this end, we cast the 

optimal material parameters as the following non-linear mathematical 

programming problem: 

find the n variables in X within prescribed upper and lower bounds, 

(i.e.,
U
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i XXX  , i=1, 2, . . . . , n) to minimize the weighted function 

(X) under a set of inequality constraints ng. 

In the above, X represents the independent, active, variables; e.g., see Eq. (31). 

The objective function can be expressed in terms of the following “error norms” 
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In the above, )(X  is the objective function; nm is the number of measurement 

stations along the specified bridge centerline; and 
jmR  is the j

th
 stress/moment 

component obtained from the time dependent analysis, and  
jER is the estimated 

stress/component obtained from the two contributions of the time independent 

analyses, i.e.,  

 
jjj coE MMR   

 
                                  (30) 

where 
joM is the stress/moment at the j

th
 station obtained from summation of 

all partial stresses/moments for each construction step using corresponding 

statical scheme; 
jcM is the corresponding one assuming all loads and 

prestress forces to be applied on the final statical system, and α and β are 

unknown variables in X, i.e., 
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 TX ],[   (31) 

Subject to the equality constraint, 

 1 g  (32) 

Utilizing a successive quadratic programming technique to solve the nonlinear 

programming problem simply amount to the following formal statements 

[Powell 1977] 

 )(min

~

X
nRX




 (33) 

subject to 

 EnforXg .,....,2,10)(    (34a)
 

 gE nnforXg .,........,0)(    (34b) 

 
UL

XXX   (34c) 

Such an optimization technique is based on iterative formulation and solution of 

quadratic programming sub-problems that can be obtained by using a quadratic 

approximation of the system‟s Lagrangian and linearizing of the constraints at 

the kth iteration as [Schittkowski 1983] 
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subject to  

 gk
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where kd  is the solution of the sub-problem; kH  is the positive definite 

approximation of the Hessian matrix; kX  is the variables at the kth iteration; 

)(X  is the gradient of the objective function;  
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and )(Xg  is the gradient of the  th active constraint. 

A line search scheme is then used to fined a new variable 1kX , 

 ]1,0(1   kkk dXX , (38) 

such that the objective function )( 1 kX  has a lower value at the new state 
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variable 1kX . 

Once the optimum variables are determined by ESTMATOR, the quality of 

the model‟s correlation with the results obtained by time dependent analysis can 

be assessed.  This is simply done by using any plotting capability to graphically 

show how well the model‟s prediction of the time dependent behavior.  At this 

point, the user has to judge whether the parameters determined by ESTMATOR 

are acceptable. 

 

5 NUMERICAL SIMULATIONS 
The primary objective of this section is of two-fold: (i) to obtain the time 

dependent serviceability analysis of two segmental prestressed concrete bridges 

over the Nile River, namely Warrak Bridge, and Talkha Bridge; and (ii) to 

assess the accuracy of the developed integrated algorithms through software 

ESTMATOR to obtain optimum parameters simulating the time-dependent 

results from two different cases of time independent analyses.  The 

ESTMATOR casts the optimum parameters as a minimum-error nonlinear 

optimization problem with constraints and solves it with the sequential 

quadratic nonlinear programming technique. With regard to item (i) above, the 

bridge superstructure is modeled as an assemblage of 2-node one-dimensional 

linear beam elements.  Each element represents the cast segment of the bridge. 

The beam element is of layer-type, that is, the cross section of the element is 

divided into several layers; each layer may consist of concrete, reinforcing bars 

and prestressing tendons.  Each node of the element consists of two translational 

degrees of freedom and one rotational degree of freedom.  The strains of each 

layer of the element consist of centroidal axial strain, and curvature. The 

corresponding generalized forces, i.e., axial force and bending moment, are 

obtained from integrating corresponding layer stresses over the entire cross 

section. In the formulation of stiffness matrix, the Bernoulli-Euler assumption 

of "plane section remains plane" is adopted. Since the piers are integrally cast 

with the superstructure, they are modeled as beam elements to account for the 

moment transfer between superstructure and piers.  

 

5.1 A case study: Talkha Bridge 
Talkha Bridge is being constructed across Demietta branch of the Nile River to 

connect the north and south parts of the Nile at Talkha city which is located in 

the Delta of Egypt.  The bridge consists of four lanes; two lanes for each traffic 

direction.  The superstructure consists of two parallel identical box girders 

which are completely separated along the longitudinal direction of the bridge.  

The cross sections of the box girder at mid-span and at piers are shown in Fig. 

1. The width of the top slab is 10.5 m.; while width of the bottom slab varies 

from 4.90 m at the mid-span to 3.80 m. at the piers.  The height of the cross 

section varies parabolicly to be 3.0 m at mid-span and 5.50 m at the piers.  The 
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final bridge structure consists of three continuous spans; i.e, two side spans and 

one main (navigation) spans as shown in Fig. 2. The side span is 65.0 m long 

and the main span is 100.0 m long.  The bridge is supported by slide bearings 

on edge piers and cast integrally with intermediate piers. The longitudinal 

prestressing layout is shown in Fig. 2.  Each prestressing tendon consists of 12 

strands. The strand is 15.2-mm diameter 7-wire low relaxation type. The 

number of top tendons is 38 around each pier; while the number of bottom 

continuity tendons is 18 in main span and 14 in each side span.  The tendons are 

initially stressed to 75% of the ultimate tensile strength (UTS). 

 

 
Figure 1.  Cross-sections of Talkha bridge 

 

 
Figure 2.  Longitudinal profile of the prestressing tendons of Talkha bridge 
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The bridge is incrementally constructed as balanced cantilever from piers N7, 

and N8 such that two parts with equal weight can be constructed at the same 

time around each pier.  Piers at axes N7 and N8 consist of 4 cast-in-place 

segments for each pier.  Each segment is cast utilizing conventional formwork 

in 30 days, while the construction of each pier takes 90 days.  The construction 

of first segment around N8 starts after constructing the first two segments 

around N7.  After constructed each segment, sufficient tendons are tensioned in 

top slab to carry its own weight, then the formwork is removed.  On the two 

sides of the river, the 17.50 m long side span is cast on temporary scaffolding 

and connected with the double cantilevers located at axes N7 and N8.  After the 

side span hardens, 6 bottom tendons are tensioned in each side span.  The 

construction of each side span takes 30 days. The tips of the cantilevers in the 

navigation span are, then, connected by a 5.0 m closure segment.  After the 

closure segment hardens, 18 bottom tendons are prestressed in the navigation 

span along with 8 bottom tendons in each of the side span.  The construction of 

the entire bridge takes 315 days.  After bottom tendons are prestressed, the 

structure achieves the continuous form. Any load applied afterwards, for 

example, the superimposed load including asphaltic wearing surface and safety 

barrier, traffic loads and other live loads will act on the continuous structure.  

 

 
Figure 3.  Bending moments due to own weight and prestressing 
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the construction, (ii) after 10000 days are shown in Fig. 3.  These moments are 

obtained by integrating the stress over the cross section and include the effect of 

prestressing and non-prestressing reinforcement. The time dependent moments 

after 10000 days exhibited little redistribution compared to those obtained after 

completing the construction. The stresses in the concrete sections, however, do 

redistribute.  This is mainly due to the loss in prestressing force in tendons.  The 

negative moments in the box girder near the piers increase over time 

demonstrating that the increase in the negative moment due to loss of 

prestressing force is greater than the decrease in negative moment due to dead 

load moment redistribution.  At the center of main span, the negative moment is 

slightly increased over time. The prestressing force along the entire bridge is 

shown in Fig. 4 for two observation times, (i) just after construction, (ii) after 

10000 days.  The percentage losses of the force in the prestressing tendons after 

completing the construction and after 10000 days compared to the 

corresponding force after transfer about 7% and 17% at sections near piers, 

respectively, and about 4% and 17% at center of main span.  The compression 

forces in normal reinforcements are increased over time as shown in Fig. 4.  

After 10000 days, such compression forces are about 16% of the prestressing 

force at section near pier, and 29% at section at center of main span.  Stress 

redistribution in top and bottom fibers of the concrete at critical sections starting 

from time at completing construction to time at 10000 days are shown in Fig. 5.   

 

 
Figure 4.  Forces in prestress and nonprestress steels 
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Figure 5.  Stress distributions over time at critical sections of Talkha Bridge 

 

It is worthy noted that a small change in moment causes a significant change in 

stress due to the reduction of prestressing force.  As an evidence from this 

figure, the stresses in the top and bottom fibers of all critical sections decrease 

with time, except the stress in bottom fiber of the section at pier. In such 

section, the stress slightly increases with time which reveals the increase in 

negative moment at this section. 
 

 

Figure 6.  Estimated moments with ESTMATOR at critical sections 
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The optimization methodology developed in ESTMATOR has been utilized to 

simulate the time dependent moments obtained after 10000 days for Talkha 

Bridge from the two contributions of the time independent analyses obtained 

by: (i) adding all partial moments for each construction step using 

corresponding statical system; (ii) assuming all loads and prestressing forces to 

be applied on the final statical system.  We start the optimization exercise with a 

set of initial values for the parameters a and β equal to 0.5. The lower and upper 

bounds are kept between 0.0 and 1.0, respectively.  The optimum values for the 

two parameters identified with ESTMATOR are 0.545 and 0.455, respectively.  

Upon comparing the estimated moments at the critical sections obtained with 

optimum values with those obtained with time dependent effects, it is evident 

from Fig. 6 that ESTMATOR accurately matches the moments provided by the 

time dependent analysis.   

 

5.2 Case study of EL-Warrak Bridge 
Warrak Bridge is one of the longest segmental prestressed concrete bridges over 

the Nile River in Egypt. Such bridge is 380 m in length, with maximum span 

length of 120 m. The bridge consists of four-spans with four-cell hunched box 

cross section.  It has eight lanes; i.e., four lanes for each traffic direction.  Each 

double cell is completely separated in the longitudinal direction of the bridge.  

The double-cell box has slanted webs and two side cantilevers providing a 

roadway 22.65 m. wide, as shown in Fig 7.  The hunched box girder is 

cantilevered from the piers using cast-in-place segments, and is later made 

continuous with a short, conventionally erected, cast-in-place girder near the 

abutments and with the adjoining cantilevered girder at mid-span. Each 

cantilever segment is post tensioned to the previous segments with several 

„‟cantilever‟‟ tendons, and after the closures at the abutments and at mid-span 

the entire bridge is prestressed with several additional „‟continuity‟‟ tendons in 

zones with high positive moments. This is a common construction sequence and 

prestressing scheme for bridges of this type. The details of the design, the 

design criteria and the construction sequence are discussed below. 
 

 
Figure 7.  Cross-sections of El-Warrak bridge 
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The span arrangement consists of two 120 meter center spans and two 70 meter 

side spans as shown in Fig. 8.  The girder depth varies over the length following 

second degree parabola from maximum of 6 m. over the piers to minimum of 

3.50 m. at the middle of the main spans. The thickness of the bottom slab varies 

also parabolically from a maximum of 1.20 m. at the piers to a minimum of 

0.30 m. at the middle of main span.  The bridge is built using the cantilever 

method. Three double cantilever parts can be constructed independently, i.e., 

around O, P and Q axes.  Each double cantilever can be constructed in segments 

starting from the pier towards the center spans, i.e., one segment from the right 

end followed by another one from the left end.  Each segment is 5.0 m. long 

except three segments of length 2.5 m. (i.e, one near each pier) to keep the 

unbalanced length between the two arms of the cantilevers during construction 

equal to 2.5 m.  Two travelers, one at each tip of the two cantilevers, are utilized 

to erect segments.  After erection of each segment, it is post tensioned to the 

previous segment (i.e., on the other end of the double cantilever) with 

„‟cantilever‟‟ tendons located in the top slab of the cross section.  Each 

cantilever tendon consists of 12, 0.6 inch (15.7 mm.) diameter strands and is 

stressed from one end.  

  

 
Figure 8.  Longitudidal profile of prestressing tendons of El-Warrak Bridge 

 

The bridge is incrementally constructed as balanced cantilever from piers O, P, 

and Q.  Piers at axes O and Q consist of 21 cast-in-place segments for each pier, 

while 20 segments are constructed around axis P.  Each segment is cast utilizing 
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conventional formwork in 7 days, while the construction of each pier takes 90 

days in additional to 14 days for the stump. The construction of stump at axis Q 

starts after constructing the first five segments around axis O, while the stump 

at axis P starts after constructing the entire segments around axis O.  On the two 

sides of the river, the 17.50 m long side span is cast on temporary scaffolding 

and connected with the double cantilevers located at axes O and Q.  After the 

side span hardens, 8 bottom tendons are tensioned in each side span.  The 

construction of each side span takes 15 days. The tips of the cantilevers in the 

navigation spans are, then, connected by a 5.0 m closure segments.  After the 

two closure segments harden, 28 bottom tendons are prestressed in each of the 

navigation span along with 6 bottom tendons in each of the side span.  The 

construction of the entire bridge takes 447 days.  After bottom tendons are 

prestressed, the structure achieves the continuous form. Any load applied 

afterwards, for example, the superimposed load including asphaltic wearing 

surface and safety barrier, traffic loads and other live loads will act on the 

continuous structure.  
 

 
Figure 9.  Stress distributions over time at critical sections of El-Warrak Bridge 

 
The percentage losses of the force in the prestressing tendons after completing 

the construction and after 10000 days compared to the corresponding force after 

transfer are about 11% and 21% at sections near piers, respectively, and about 

5.5% and 19.5% at center of main span.  Stress redistribution in top and bottom 

fibers of the concrete at critical sections starting from time at completing 
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construction to time at 10000 days are shown in Fig. 9.  It is worthy noted that a 

small change in moment causes a significant change in stress due to the 

reduction of prestressing force.  As an evidence from this figure, the stresses in 

the top and bottom fibers of all critical sections decrease with time, except the 

stress in bottom fiber of the section at pier. In such section, the stress slightly 

increases with time which reveals the increase in negative moment at this 

section.  

 

 
Figure 10.  Estimated moments with ESTMATOR at critical sections of El-Warrak Bridge 
 

The optimization methodology developed in ESTMATOR has been utilized to 

simulate the time dependent moments obtained after 10000 days for such 

Bridge from the two contributions of the time independent analyses obtained 

by: (i) adding all partial moments for each construction step using 

corresponding statical system; (ii) assuming all loads and prestressing forces to 

be applied on the final statical system.  We start the optimization exercise with a 

set of initial values for the parameters a and β equal to 0.5. The lower and upper 

bounds are kept between 0.0 and 1.0, respectively.  The optimum values for the 

two parameters identified with ESTMATOR are 0.572 and 0.428, respectively.  

Upon comparing the estimated moments at the critical sections obtained with 

optimum values with those obtained with time dependent effects, it is evident 

from Fig. 10 that ESTMATOR accurately matches the moments provided by 

the time dependent analysis.   

 

5.3 Effect of construction time schedule on moment redistribution  
This study presents the effect of the construction time schedule of the segmental 

bridges on the moment redistribution. Such study made over real bridges, i.e. 

El-Warrak bridge and Talkha bridge. Using the CPF computer program, 
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analyses of these bridges are considered for different time of construction. 

These bridges have been analyzed in sections 5.2 and 5.3 with the real 

construction time schedule; i.e., called, “normal case”.  Here, the same two 

bridges are analyzed with two other construction time schedules; i.e., one is 

faster and the other is slower than the real construction (normal case). These 

two cases are called “fast case” and “slow case”, respectively. In fast case, 

constructions of segments around all piers start and finish simultaneously.  The 

time for constructing Talkha and El-Warrak bridges using the fast schedule is 

255, and 304 days, respectively.  On the other hand, in slow case, segments of 

double cantilever around each pier constructed sequentially.  The time for 

constructing Talkha and El-Warrak bridges with slow schedule is 420 and 875 

days, respectively.   

The optimization methodology in ESTAMATOR has been utilized to 

simulate the time dependent moments obtained after 10000 days for these 

bridges for the other two cases; i.e. fast and slow cases. The two contributions 

of the time independent analyses obtained by: (i) superposition all partial 

moments for each construction step using the corresponding statical system; (ii) 

assuming all loads and prestressing forces to be applied on the final statical 

system.  We start the optimization exercise with a set of initial values for the 

parameters α and β equal to 0.5. The lower and upper bounds are kept between 

0.0 and 1.0, respectively.  The optimum values for the two parameters identified 

with ESTMATOR as shown in Table 1. 

 

Table 1.  Values of parameters α and β for different time schedules 

 
parameters 

α and β 

construction time schedule 

fast Normal slow 

Talkha Bridge 
α 0.390 0.545 0.632 

β 0.610 0.455 0.368 

El-Warrak Bridge 
α 0.378 0.572 0.749 

β 0.622 0.428 0.251 

 

The estimated moments at the critical sections obtained with optimum values 

are in good agreement with those obtained with time dependent effects; i.e., 

ESTMATOR accurately matches the moments provided by the time dependent 

analysis.  As shown from this table, the parameters α and β range between two 

limits; i.e., 0.38 and 0.62 for fast time schedule of construction, and 0.75 and 

0.25 for slow time schedule of construction. 

 

6 CONCLUSIONS 
Details of several algorithmic developments have been presented as parts of an 

overall strategy to estimate the parameters needed to predict the time dependent 

effects of segmental prestressed concrete bridges from the conventional 
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analyses in which the time dependent effects have been ignored.  These 

algorithms were subsequently incorporated into optimization software 

(ESTMATOR).  In this, a general time-stepping algorithm for stress-update is 

developed for concrete, prestressed and non-prestressed steels. This includes 

time dependent effects due to creep and shrinkage of concrete utilizing 

Eurocode, relaxation of prestress steel, losses due to friction and anchor setting 

of prestressed tendons; and sequence of construction and change of geometry 

and support conditions (if any).  The optimization module in ESTMATOR is 

used to cast the estimation of the parameters as a minimum-error, objective, 

nonlinear optimization problem, which is subsequently solved using the 

sequential quadratic programming technique.  Suitable error functions were 

utilized as the basis for the last phase of optimization. 

Regarding applications, two segmental prestressed concrete bridges over the 

Nile river have been investigated.  The first is called Talkha Bridge in Delta, 

while the other is called Warrak Bridge in Cairo, Egypt.  The results obtained 

have clearly demonstrated the great potential, effectiveness, as well as practical 

utility of the proposed methodology.  In particular, a number of pertinent 

remarks are summarized below:  

(i) The capability of the develop scheme can handle a realistic, large 

scale, multi-span prestressed concrete box girder built using the 

cantilever method, utilizing cast in place segments, traveling 

formwork, conventionally erected girder segments near the 

abutments, and temporary supports.  

(ii) Prediction of stresses and deformations in segmentally erected 

prestressed concrete bridges can be considerably in error if the 

effects of creep, shrinkage, and relaxation are ignored. 

(iii) The overall static equilibrium of the girder slightly changes over 

time in comparison with the internal stresses in the girder. Changes 

in moment due to creep and its associated moment redistribution 

are nearly balanced by changes in moment due to losses in 

prestressing force. 

(iv) ESTMATOR predicted the time dependent moments at different 

sections of bridges from two time independent analysis models; i.e., 

the first one following the construction sequence by superposition 

all partial moments for each construction step using its 

corresponding statical system; while the second assuming all loads 

and prestressing forces to be applied on the final statical system. 

Several conclusions can be summarized as: 

a. Estimated parameters to simulate the time dependent analysis 

are sensitive to the time schedule of construction. 

b. For normal time schedule of construction, the recommended 
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parameters are 0.55 and 0.45 for α and β, respectively. 

c. The parameters α and β ranged between two limits; i.e., 0.38 

and 0.62 for fast time schedule of construction, and 0.75 and 

0.25 for slow time schedule of construction. 
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