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ABSTRACT: Deflection control is an important design criterion for the 

serviceability of pretensioned concrete bridges. Upward cambers due to 

prestressing forces can be utilized to offset downward deflections due to gravity 

loads in order to control cracks and/or to produce desired cambers. The 

traditional hand-calculated approach simplifies the computation of pretensioned 

concrete girders by: (1) assuming that the prestressing force acting at the 

midspan of a girder remains constant along the entire span of the girder, (2) 

neglecting the p-δ effect on the girder due to the axial compression force in the 

girder, and (3) using the gross concrete section of the girder to compute the 

moment of inertia of the girder. The purpose of this work is to investigate the 

accuracy of the hand-calculated approach for the computation of cambers due to 

prestressing forces. The type of prestressed concrete girder investigated in this 

work is a pretensioned I-girder with a combination of straight strands and 

harped strands. The major findings derived from this work are: (1) the variation 

(non-uniformity) among prestressing forces acting along the tendons has no 

significant effect on the deflection of the girder, (2) the traditional hand-

calculated approach neglecting the P-δ effect may result in considerably smaller 

girder deflections, and (3) the traditional hand-calculated approach using the 

moment of inertia of the gross concrete section (neglecting the additional 

stiffness contributed by tendons) may result in considerably larger girder 

deflections. 

 
KEYWORDS: Bridges; Deflection; Finite element method; Girders; 

Prestressed concrete. 
 

1 INTRODUCTION 
Serviceability of a bridge refers to the performance of the bridge in service. 

Some of the most frequently considered serviceability issues with regard to 

prestressed concrete bridge girders relate to short- and long-term cambers or 

deflections. This paper focuses on the behavior of short-term cambers. 

A camber is defined as an upward deflection induced at a point of a member 

from its position before application of a prestressing force to its position after 
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application of the prestressing force. In a simply supported prestressed girder, a 

prestressing force typically produces an upward camber (since the prestressing 

force is usually applied below the centroid of the section), while the self-weight 

produces a downward deflection. The final deflection, therefore, depends on the 

combined effects of the prestressing force and the self-weight. Upward cambers 

due to prestressing forces can be utilized to offset downward deflections due to 

gravity loads in order to control cracks and/or to produce desired cambers. 

Typically, the downward deflection due to the self-weight of a prestressed 

bridge girder cannot be controlled, while the camber of the girder due to a 

prestressing force can easily be adjusted by changing the profile of the tendon 

or the magnitude of the prestressing force.  

 

2 CAMBER COMPUTATION USING THE HAND-CALCULATED 

EQUIVALENT LOAD METHOD 
A pretensioned element is a prestressed element in which the tendons are 

tensioned prior to casting the concrete. As shown in Fig. 1, the combination of 

two typical tendon profiles, straight strands and harped strands, are commonly 

used for the construction of precast, pretensioned bridge I-girders [1,2,3].  
 

 
Figure 1.  Longitudinal strand profile of a precast, pretensioned bridge I-girder 
 

The equivalent load method treats the concrete girder as an elastic member 

loaded by the prestressed tendon reactions.  According to this method, the 

tendon can be removed and the forces it exerts on the girder are treated as loads. 

The equivalent loads for straight tendons and harped tendons are shown in Figs. 

2(b) and 3(b), respectively [4, 5], while Fig. 4 shows the deflections at the 

midspan of a simply supported beam due to various loading conditions [6]. 

Camber computation can be performed using the equivalent loads induced by 

the strand profiles shown in Figs. 2 & 3 and the deflection computation 

formulas shown in Fig. 4.  

Referring to Figs. 2(b) and 4(a), the midspan camber due to the prestressing 

force for the simply supported beams shown in Fig. 2(a) can be computed using 

Eq. (1): 

Midspan 

Straight strands 

Harped strands 

Half of girder length  
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where: Δ is the midspan camber, 

  L is the span length, 

  Ps  is the prestressing force, 

e is the eccentricity between the center of gravity of the tendon 

area and the center of gravity of the concrete section, 

E is the modulus of elasticity of concrete, and 

I is the moment of inertia of the section resisting externally applied 

loads. 

Also, referring to Figs. 3(b), 4(a), and 4(b), the midspan camber due to the 

prestressing force for the simply supported beams shown in Fig. 3(a) can be 

computed using Eq. (2): 

)e(P
8EI

L
)4a(3L

24EI

)(eP
Δ 2s

2
221s                 (2) 

where: e1 is the sag at the mid-span of the depressed tendon, and 

e2 is the vertical distance between c.g.s. (center of gravity of            

prestressed steel) and c.g.c. (center of gravity of concrete section) 

at the end section. 

Note that the following assumptions have been made for the development of the 

Eqs. (1) & (2):  

a) The prestressed concrete is a homogeneous elastic body which closely obeys 

the ordinary laws of flexure and shear. 

b) Deflections due to shear deformation are small and therefore may be 

disregarded. 

c) The uncracked concrete cross-sectional area is used to compute the moment 

of inertia.  Therefore, if the computed tensile stress in concrete immediately 

after prestress transfer exceeds 6 cif  (where cif  is the compressive strength 

of concrete at time of initial prestress) at the ends of simply supported 

members, or 3 cif  at other locations, additional bonded reinforcement shall 

be provided in the tensile zone to resist the total tensile force in concrete 

computed with the assumption of an uncracked section [7]. 

d) The magnitude of the prestressing force acting on the girder remains 

unchanged throughout the entire span of the girder.   
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Figure 2.  Equivalent loads for straight tendons 

 

 
Figure 3.  Equivalent loads for harped tendons 
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Figure 4.  Beam deflections at midspan due to various loading conditions 
 

3 LOSS OF PRESTRESS DUE TO THE ELASTIC 

SHORTENING IN PRETENSIONED GIRDERS 
Immediately after the prestressing force is transferred to a pretensioned concrete 

girder, the girder shortens and the prestressed tendons shorten with it, resulting 

in the loss of prestress in the tendons.  

Prestress loss due to the elastic shortening in pretensioned girders can be 

computed using Eq. (3): 

         cgp

ci

p

pES f
E

E
f          (3) 

where: Ep  is the modulus of elasticity of prestressed steel,   

Eci is the modulus of elasticity of concrete at time of initial prestress, 

and 

fcgp  is the stress in concrete at the center of gravity of prestressed 

steel immediately after the prestressing force has been applied to 

the concrete, that is: 
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where:    Ag  is the gross area of the girder section, 

em is the average prestressed steel eccentricity at the midspan of the 

girder, 

Ig  is the moment of inertia of the gross concrete section, 

Mg  is the moment at the midspan due to the self-weight of the girder, 

and 

Pi  is the prestressing force in tendons immediately after prestress 

loss due to the elastic shortening of concrete, that is: 

 pESpbtpsi ΔffAP                                            (5) 

where:    Aps  is the area of prestressed steel, and 

fpbt  is the stress in prestressed steel immediately prior to prestress 

transfer.   

The prestressing force in tendons immediately after prestress loss due to the 

elastic shortening of concrete may be assumed to be 90 percent of the initial 

prestressing force before prestress transfer and the analysis iterated until an 

acceptable accuracy is achieved. Alternatively, to avoid iteration, ΔfpES can be 

computed using Eq. (6) [8]:  
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4 PRESTRESSING FORCE SIMULATION  
The theory of “thermal effects on steel” is utilized in this paper to simulate 

prestressing forces in tendons. The change in unit stress in prestressed steel due 

to the change in temperature of the steel can be computed using Eq. (7) [9]: 

     Change in unit stress = Epε(Δt)                (7) 

where:  Ep is the modulus of elasticity of prestressed steel,  

ε  is the thermal expansion coefficient of prestressed steel, and 

Δt  is the change in temperature of prestressed steel.  

The computed stresses in Eq. (7) in turn can be utilized to simulate the 

prestressing force in prestressed steel using Eq. (8): 

Simulated prestressing force =ApsEpε(Δt)       (8) 

where:  Aps is the area of prestressed steel. 

Since the change in unit stress in prestressed steel is the product of “ ε ” and 

“Δt ,” any expected prestressing force can be simulated by using a random value 
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of “ ε ” multiplied by a corresponding “Δt ” value.  

  

5 CAMBER COMPUTATION EXAMPLE  
The example demonstrated below is for the computation of the camber for a 

pretensioned concrete girder due to prestressing forces immediately after 

prestress transfer.  

A concrete girder with a 96-ft simple span, as shown in Fig. 5, is 

pretensioned using 40-0.5 in. diameter low-relaxation strands (Aps = 40 × 0.153 

in.
2
 = 6.12 in.

2
) with a modulus of elasticity (Ep) of 28,500 ksi. Compute the 

camber at midspan due to a prestressing force immediately after prestress 

transfer assuming that: (1) fpu (specified tensile strength of prestressed steel) = 

270 ksi, (2) fpbt (the stress in prestressed steel immediately prior to prestress 

transfer) = 0.75fpu, and (3) Eci (the modulus of elasticity of concrete at time of 

initial prestress) = 4458 ksi.  

 

5.1 Compute the moment of inertia of the gross concrete section 
Computation of the moment of inertia about the centroidal axis of the uncracked 

gross concrete section of the girder shown in Fig. 6 is shown in Table 1. 

 

Table 1.  Computation of the moment of inertia of the gross concrete section 

segment area (in.2) Y (in.)a Ay (in.3) Ay2 (in.4) Io (in.4)b 

(1) 112 1.75        196            343         114 

(2) 55 2.75        151.25            416         139 

(3) 32 4.167        133.33            556             7 

(4) 4 6.167          24.67            152             1 

(5) 291 29.75     8,657.25     257,553    57,042 

(6) 45 46.5     2,092.5       97,301           51 

(7) 120 51     6,120     312,120         360 

Σ 659    17,375     668,441    57,714 

 
a
y =  the distance from the centroid of a segment to the top fiber of the gross 

concrete section. 
b
Io =  the moment of inertia of a segment about its centroidal axis. 
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Figure 5.  The elevation and cross sections of the Pretensioned concrete girder example 
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Figure 6.  Gross section of the I-girder for the camber computation example 
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The location of the centroidal axis of the gross section of the girder is shown in 

Fig. 6. Furthermore, the moment of inertia of the gross section about the 

centroidal axis of the section can be computed to be: 
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5.2 Locate the center of gravity of the prestressing steel in the girder  
Referring to Fig. 5, the distance between the centroid of the 28 straight strands 

and the extreme bottom fiber of the girder at all locations is: 
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The distance between the centroid of the 12 harped strands and the extreme 

bottom fiber of the girder at the harp points and the midspan is: 

7
)6(2

)21018642(2



in. 

The longitudinal strand profile and the locations of the centroids of the harped 

and straight strands at the ends, the harp points, and the midspan of the girder 

are shown in Fig. 7. 
 

 
Figure 7.  Longitudinal strand profile and locations of centroids of straight and harped strands 
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The longitudinal strand profile and the locations of the centroid of the combined 

straight and harped strands at the ends, the harp points, and the midspan are 

shown in Fig. 8. 

 
Figure 8. Longitudinal strand profile and locations of the centroid of combined straight and 

harped strands 
 

5.3 Compute prestress loss due to the elastic shortening of the girder  
For the first iteration, assuming that the prestressing force in tendons 

immediately after prestress loss due to the elastic shortening of concrete is 90 

percent of the initial prestressing force before prestress transfer, that is: 
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From Eq. (5), one has: 
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2
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Since Ag = 659 ft
2
 (referring to Table 1) and L = 96 ft, the moment at the 

midspan due to the weight of the girder (the weight of the girder is estimated to 
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3
) at the time of prestressing can be computed to be: 
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8
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g  = 9489.6 kip-in. 

Note that, in the above equation, “w” is the self-weight per unit length of 

the girder. Also, referring to Fig. 6, the distance between the centroid of the 

gross concrete section and the bottom fiber of the girder can be computed to be:   

Yb= 54 in. y = 54 in. – 26.366 in. = 27.634 in. 

Furthermore, referring to Fig. 8, the average prestressed steel eccentricity at the 

midspan thus can be computed to be: 

me 27.634 in. – 4.9 in. = 22.734 in. 

From Eq. (4), one has: 
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For the second iteration, one has: 

 )Δf(fAP pESpbtpsi (6.12 in.
2
)[0.75(270 ksi) – 19.42 ksi] = 1120.45 kips 

From Eq. (4), one has: 
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From Eq. (3), one has: 
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For the third iteration, one has: 

 )Δf(fAP pESpbtpsi (6.12 in.
2
)[0.75(270 ksi) – 19.54 ksi] = 1119.72 kips 

From Eq. (4), one has: 
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From Eq. (3), one has: 
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For the fourth iteration, one has: 

 )Δf(fAP pESpbtpsi (6.12 in.
2
)[0.75(270 ksi) – 19.52 ksi] = 1119.84 kips 

From Eq. (4), one has: 
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Since the prestress loss at the midspan due to the elastic shortening of the girder 

determined from the fourth iteration is the same as that determined from the 

third iteration, the accuracy of the result (  pESf 19.52 ksi) is acceptable. 

Alternatively, to avoid multiple iterations, ΔfpES can be directly determined 

using Eq. (6): 
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The prestressing force in the prestressed steel at the midspan immediately after 

prestress loss due to the elastic shortening of concrete thus can be computed to 

be: 

 )Δf(fAP pESpbtpsi (6.12 in.
2
)[0.75(270 ksi) – 19.52 ksi] = 1119.84 kips 

Follow the calculation procedure demonstrated above, the initial prestressing 

forces, Pi, along the pretensioned girder shown in Fig. 8 are computed and are 

shown in Table 2 and Fig. 9.  

As shown in Fig. 9, since the magnitude of the variation of the initial 

prestressing forces acting along the tendons is not significant (about 3% in this 

example), the inconstant prestressing forces acting along the girder have no 

significant effect on the deflection of the girder. 
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Table 2.  The initial prestressing forces acting along the pretensioned girder 
x (the distance of 

the section 

measured from the 

left support shown 

in Fig. 9) 

(ft) 

e (the vertical 

distance 

between c.g.s. 

and c.g.c.) 

(in.) 

Mg (the moment  

due to the weight 

of the girder) 

(kip-in.) 

ΔfpES (prestress 

loss due to the 

elastic shortening 

of the girder) 

(ksi) 

Pi (the initial 

prestressing 

forces) 

(kips) 

0 10.734 0 14.34 1151.57 

4 12.234 1515.7 14.80 1148.71 

8 13.734 2899.6 15.32 1145.56 

12 15.234 4151.7 15.89 1142.04 

16 16.734 5272.0 16.54 1138.09 

20 18.234 6260.5 17.26 1133.64 

24 19.734 7117.2 18.08 1128.64 

28 21.234 7842.1 19.00 1123.02 

32 22.734 8435.2 20.03 1116.74 

36 22.734 8896.5 19.81 1118.09 

40 22.734 9226.0 19.65 1119.06 

44 22.734 9423.7 19.55 1119.63 

48 22.734 9489.6 19.52 1119.84 

 

 
Figure 9. Various prestressing forces acting along the girder immediately after prestress loss due 

to the elastic shortening of concrete  
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equivalent load and P-δ effect method using gross section properties neglecting 
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element analysis approach and section properties accounting for prestressed 

steel, and (V) the thermal effects method using the finite element analysis 

approach and section properties accounting for prestressed steel.  
 

(I) The equivalent load method using the traditional hand-calculated approach 

and gross section properties neglecting prestressed steel: 

Referring to Figs. 2, 6, & 7, one has e = 54 – 26.366 – 4 = 23.634 in. and Ps = Pi 

= 1119.84(28/40) = 783.89 kips. The midspan camber due to prestressing of the 

straight strands thus can be computed using Eq. (1): 

 
572.2)634.2389.783(

)268051)(4458(8

1296
2




  in. ↑ (upward) 

Furthermore, referring to Figs. 3, 6, & 7, one has e1 = 47 – 7 = 40 in., e2 = (54 – 

26.366) – 47 = (–)19.366 in., a = 384 in. and Ps = Pi = 1119.84(12/40) = 335.95 

kips. The midspan camber due to prestressing of the harped strands thus can be 

computed using Eq. (2): 

19.366)(335.95)(-
8051)8(4458)(26

(1152)
]4(384)[3(1152)

68051)24(4458)(2

335.95(40)
Δ

2
22 

 

    = 1.589 – 0.903 = 0.686 in. ↑ (upward) 

The total midspan camber due to prestressing of the straight and the harped 

strands thus is: 
686.0572.2Δ  = 3.258 in. ↑ (upward) 

The above computation procedure can be abbreviated using the combined 

straight and harped strands profile, as shown in Fig. 8. Referring to Figs. 3, 6, & 

8, one has e1 = 16.9 – 4.9 = 12 in., e2 = (54 – 26.366) – 16.9 = 10.734 in., a = 

384 in., and Ps = Pi = 1119.84 kips. The midspan camber due to prestressing of 

the combined straight and harped strands thus can be computed using Eq. (2): 

10.734)(1119.84)(
8051)8(4458)(26

(1152)
]4(384)[3(1152)

68051)24(4458)(2

12)(1119.84)(
Δ

2
22 

 

    = 1.589 + 1.669 = 3.258 in. ↑ (upward) 

The midspan deflection due to the self-weight of the girder can be computed 

using Eq. (9) [6]:  
 

                                           














EI

wL

384

5 4

                                              (9) 

where:  w is the self-weight per unit length of the girder.  
 

The self-weight per unit length of the girder can be computed to be w = 

(0.15 kips/ft
3
) [(659/144) ft

3
] = 0.6864 kips/ft. From Eq. (9), one has: 
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098.1
)268051)(4458(

)12()96)(6864.0(

384

5 34









 in. ↓ (downward) 

Therefore, the net midspan camber (upward deflection) can be computed to be: 

 098.1258.3 2.160 in. ↑ (upward) 

(II) The equivalent load method using the finite element analysis approach and 

gross section properties neglecting prestressed steel: 

Referring to Figs. 3(a) & 8, one has tan θ = (16.9-4.9)/(32×12); from which, 

θ = 1.7899º. Therefore, Pi cos θ  = 1119.84 kips × cos 1.7899º = 1119.29 kips 

and Pi sin θ  = 1119.84 kips × sin 1.7899º = 34.98 kips.  The equivalent loads 

(produced by the pretensioned steel) and the loaded locations are shown in Fig. 

10(a). The self-weight of the girder is shown in Fig. 10(b). Note that the c.g.c 

line is the assumed location at which the self-weight of the girder is applied. 
 

 
Figure 10.  Equivalent loads (produced by pretensioned steel) and the self-weight of the girder 
 

Based on Fig. 10, a computer model composed of numerous 3-D solid elements 

for the girder cross section was constructed (shown in Fig. 11) for the finite 

element analysis using the NISA/DISPLAY software [10]. Note that the cross 

section of the girder shown in Fig. 11 incorporates the elevations of 16.9 in. (the 

elevation to be loaded by the equivalent load produced by the prestressed steel 

at the end of the girder), 4.9 in. (the elevation to be loaded by the equivalent 

load produced by the prestressed steel at the harp point of the c.g.s. line), and 

27.6 in. (the elevation of the c.g.c. line of the girder to be loaded by the self-

weight of the girder).  

27.6" 

Midspan 

0.6864 k/ft 

Midspan 

4.9" 

 

34.98 k 34.98 k 

1119.29 k 

16.9" 

384” 192” 

576” 

(a) Equivalent loads produced by the pretensioned steel 

384” 192” 

576” 

(b) Self-weight of the girder 
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Figure 11.  Computer model of the cross section of the girder neglecting prestressed steel 
 

 
Figure 12. Camber due to the prestressing force immediately after prestress transfer, computed 

using first-order elastic finite element analysis 

 

From the finite element analysis using the equivalent loads produced by the 

pretensioned steel shown in Fig. 10(a), the camber at the midspan of the girder 

due to the prestressing force immediately after prestress transfer was found to 

be 3.272 in., as shown in Fig. 12. Also, from the finite element analysis using 

the load shown in Fig. 10(b), the downward deflection at the midspan of the 

girder due to the self-weight of the girder was found to be 1.116 in., as shown in 

Fig. 13. 

16.9" 

27.6" 

4.9" 
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Figure 13. Downward deflection due to the self-weight of the girder, computed using first-order 

elastic finite element analysis 
              
From Figs. 12 & 13, the net midspan camber can be computed to be: 

 116.1272.3 2.156 in. ↑ (upward) 

Alternatively, the camber at the midspan of the girder due to the combined 

equivalent loads (produced by the pretensioned steel) and the self-weight of the 

girder shown in Fig. 14 was found to be 2.155 in. (≈ 2.156 in. as computed 

above), as shown in Fig. 15. 
 

 
Figure 14. Equivalent loads (produced by pretensioned steel) in combination with the self-weight 

of the girder 
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Figure 15.  Camber due to equivalent loads (produced by pretensioned steel) in combination with 

the self-weight of the girder, computed using first-order elastic finite element analysis 
 

(III) The combined equivalent load and P-δ effect method using gross section 

properties neglecting prestressed steel and the finite element analysis approach 

accounting for geometric nonlinearity: 

Referring to Fig. 16, the deflection δ at the midspan of the structural element 

causes additional deflection δpy   due to the axial force (P) acting at the position 

that has been displaced by an amount δ. This is the so-called P-δ effect, that is, 

the additional deflection δpy   at the midspan of the element is the portion of the 

deflection caused by the secondary bending moment due to the P-δ effect.  
 

 
Figure 16.  P-δ effect on the deflection of a structural element subject to an axial force 

 

From the Camber Computation Approach (II), the camber δ (shown in Fig. 16) 

was found be to be 2.155 in. for this girder (shown in Fig. 15) using the first-

order elastic finite element analysis. Since the additional deflection δpy   at the 

midspan of the girder can only be determined using the second-order elastic 

analysis, a nonlinear static finite element analysis accounting for geometric 

nonlinearity was conducted in order to carry out the second-order elastic 

analysis. A pseudo time of 100 has been used for the time span, which is 

equivalent to load increments or steps (from zero to that shown in Fig. 14) for 

the geometric nonlinear static finite element analysis. The final camber (at the 

time step = 100) of the girder due to the self-weight of the girder and the 

δ P P 

yp-δ 
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prestressing force immediately after prestress transfer using the finite element 

analysis accounting for geometric nonlinearity (P-δ effect) was found to be 

2.462 in., as shown in Fig. 17. Therefore, the additional deflection δpy   at the 

midspan of the girder, as shown in Fig. 16, due to P-δ effect can be computed to 

be: 

δpy  = 2.462 – 2.155 = 0.307 in. ↑ (upward) 

 
Figure 17.  Camber due to equivalent loads (produced by pretensioned steel) in combination with 

the self-weight of the girder, computed using the finite element analysis accounting for geometric 

nonlinearity (P-δ effect) 

 

(IV) The equivalent load method using the finite element analysis approach and 

section properties accounting for prestressed steel: 

Based on the longitudinal strand profile, a computer model composed of 

numerous 3-D solid elements for the girder cross section was constructed, as 

shown in Fig. 18, for the finite element analysis. Note that the cross section of 

the girder shown in Fig. 18 incorporates the elevations of 16.9 in. (the elevation 

to be loaded by the equivalent load produced by the prestressed steel at the end 

of the girder), 4.9 in. (the elevation to be loaded by the equivalent load 

produced by the prestressed steel at the harp point of the c.g.s. line), and 27.6 in. 

(the elevation of the c.g.c. line of the girder to be loaded by the self-weight of 

the girder).  
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Figure 18.  Computer model of the girder cross section accounting for prestressed steel 
 

From the finite element analysis using equivalent loads produced by the 

pretensioned steel shown in Fig. 10(a), the camber at the midspan of the girder 

due to the prestressing force immediately after transfer was found to be 2.945 

in., as shown in Fig. 19. Also, from the finite element analysis using the load 
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shown in Fig. 10(b), the downward deflection at the midspan of the girder due 

to the self-weight of the girder was found to be 1.051 in., as shown in Fig. 20. 

From Figs. 19 & 20, the net midspan camber can be computed to be: 

 051.1945.2 1.894 in. ↑ (upward) 
 

 
Figure 19.  Camber of the girder (with its cross section property accounting for prestressed steel) 

due to the prestressing force immediately after prestress transfer 
 

 
Figure 20. Downward deflection of the girder (with its cross section property accounting for 

prestressed steel) due to the self-weight of the girder 

 

(V) The thermal effects method using the finite element analysis approach and 

section properties accounting for prestressed steel:  

The theory of “thermal effects on steel” is utilized in this approach to 

simulate prestressing forces in tendons. Since the change in unit stress in 

prestressed steel is the product of “ ε ” and “Δt ” (where ε is the thermal 

expansion coefficient of prestressed steel and Δt is the change in temperature of 

prestressed steel), the expected prestressing force (Pi = 1119.84 kips) can be 

simulated using a random thermal expansion coefficient of prestressed steel 

( ε = 6.5×10
-6 

1/°F) multiplied by a corresponding temperature change of 
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prestressed steel (Δt = 987.75 °F). Therefore, from Eq. (8), one has: 

iP 1119.84 kips = ApsEpε(Δt) = (6.12 in
2
)(28500 ksi)(6.5×10

-6 
1/°F)(987.75 

°F). A finite element analysis was carried out using the thermal effects method 

and the camber of the girder due to the thermal effect on the simulated 

prestressing force is shown in Fig. 21.    

 
Figure 21.  Camber of the girder (with its cross section property accounting for prestressed steel) 

computed using the thermal effects method 

 

5.5  Summary of the results 
The deflections at the midspan of the girder due to the prestressing force 

immediately after prestress transfer and the self-weight of the girder computed 

using various approaches (Approaches I through V) are summarized in Table 3. 
 

Table 3.  The deflection at the midspan of the girder due to the prestressing 

force immediately after transfer and the self-weight of the girder 
approach deflection due to prestressing 

force 

deflection due to self-weight final deflection 

I 3.258 in. ↑ 1.098 in. ↓ 2.160 in. ↑ 

II 3.272 in. ↑ 1.116 in. ↓ 2.156 in. ↑ 

III not applicable not applicable 2.462 in. ↑ 

IV 2.945 in. ↑ 1.051 in. ↓ 1.894 in. ↑ 

V 2.938 in. ↑ 1.051 in. ↓ 1.887 in. ↑ 

 

As shown in Table 3, Approach II can be used to validate the results obtained 

from Approach I; also, Approach V can be used to validate the results obtained 

from Approach IV.   
 

6 CONCLUSIONS 

Five different approaches for the computation of the camber in a pretensioned 

girder immediately after prestress loss due to the elastic shortening of the girder 
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are presented in this paper. Approaches (I) and (II) used the equivalent load 

method and gross section properties neglecting prestressed steel. Approach (III) 

used the combined equivalent load and P-δ effect method and gross section 

properties neglecting prestressed steel. Approaches (IV) and (V) used the 

equivalent load method and the thermal effects method, respectively, while 

section properties of both approaches accounted for the use of prestressed steel. 

Approach (I), which uses the gross section properties and neglects prestressed 

steel as well as the P-δ effect due to axial prestressing forces, is a 

conventionally used approach for the computation of deflections in simply 

supported pretentioned concrete girders. This study concludes that (1) the 

deflections considerably increased (by about 14 % in the example demonstrated 

in this study) if the P-δ effect is considered, and (2) the deflections considerably 

decreased (by about 13 % in the example demonstrated in this study) if the 

section properties accounting for prestressed steel is considered. In addition, this 

study also concludes that since the magnitude of the variation of the 

prestressing forces acting along the tendons is not significant, the inconstant 

prestressing forces acting along the girder have limited effects on the deflection 

of the girder. Therefore, for the computation of cambers of a simply supported 

girder, the magnitude of the prestressing force acting at locations other than the 

midspan of the girder can be treated as the same as that at the midspan.   
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