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ABSTRACT: Towards improving conventional beam elements in order to 

include nonuniform warping effects in the dynamic analysis of bridge decks, in 

this paper, independent warping parameters have been taken into account and 

advanced stiffness matrices have been proposed. In addition to this, curved 

beam’s behavior becomes more complex, even for dead loading, due to the 

coupling between axial force, bending moments and torque that curvature 

produces. Thus, the importance of simulating geometry exactly arises in order 

to approximate accurately the response of the curved beam. For this purpose, 

the Isogeometric tools (b-splines and NURBS), either integrated in the Finite 

Element Method (FEM) or in a Boundary Element based Method (BEM) called 

Analog Equation Method (AEM), are employed in this contribution for the 

static and dynamic analysis of horizontally curved bridge decks of open (I 

girders) or closed (box-shaped) cross section. Free vibration characteristics and 

responses of the stress resultants and displacements to static, moving and 

earthquake loading have been studied. Design guidelines for intermediate 

diaphragms have been applied for different thin-walled box-shaped bridge 

decks and assessed as an indirect way to prevent distortional effects. 
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1. INTRODUCTION 
Thin-walled straight or curved structures having open or closed cross-section 

are widely used in bridge engineering due to their large bending and torsional 

rigidities as well as their low self-weight. As far as their flexural behavior is 

concerned, the involved members of these structures are usually analyzed 

employing beam elements based on Euler-Bernoulli or Timoshenko beam 

theories. Both of these theories maintain the assumption that cross sections 

remain plane after deformation. Thus, the formulation remains simple; however 
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it fails to capture “shear lag” phenomenon, which is associated with a 

significant modification of normal stress distribution due to nonuniform shear 

warping [1,2]. This phenomenon has been reported long ago [3-5] in many 

structural members such as beams of box-shaped cross sections, folded 

structural members or beams of materials weak in shear. In up-to-date 

regulations, the significance of shear lag effect in flexure is recognized; 

however in order to simplify the analysis and permit the use of available 

conventional finite beam elements, the “effective breadth” concept [6-8] is 

recommended. This simplifying approach may fail to capture satisfactorily the 

actual structural behavior of the member, since the influence of shear lag 

phenomenon is not constant along the beam length, while apart from the 

geometrical configuration of the cross section it depends also on the type of 

loading [9,10]. Similar considerations with the ones made for flexure could be 

also adopted for the torsional problem, which is also very often encountered in 

the analysis of curved-in-plan bridges. It is well-known, that when a beam 

undergoes general twisting loading under general boundary conditions, is 

leaded to nonuniform torsion. This problem has been extensively examined in 

the literature (e.g. see [11,12]) and its major characteristic is the presence of 

normal stress due to primary torsional warping. In an analogy with Timoshenko 

beam theory when shear deformation is of importance, Secondary Torsional 

Shear Deformation Effect (STSDE) [13,14] has to be taken into account as well. 

The additional secondary torsional warping due to STSDE causes similar 

effects with shear lag in flexure, i.e. a modification of the initial normal stress 

distribution. It is noted that due to the complicated nature of torsion, simplified 

concepts such as “effective breadth” cannot be applied to take into account this 

behavior. 

The above described effects may become substantial in complex structural 

forms comprising box-shaped homogeneous or composite cross sections, curved 

members, short spans or arbitrary loading. Hence a realistic estimation of stress 

state employing conventional beam elements becomes difficult, since generally 

commercial programs consider six degrees of freedom (DOFs) at each node of a 

member of a spatial frame, ignoring in this way all the warping effects due to 

corresponding warping restraint [15-17]. Therefore, it can be concluded that in 

order to accurately estimate and assess the actual stress state of a spatial framed 

structure more rigorous analyses need to be performed. 

Even though refined models based on shell or solid finite elements provide 

the means to perform such analyses, the inclusion of nonuniform warping 

effects in beam elements based on so-called “Higher-Order Beam Theories” 

[18,19] is of increased interest due to their important advantages over more 

elaborate approaches. More specifically 

 A Beam formulation reduces significantly modeling effort (solid models 

require cumbersome post- and pre-processing even in relatively simple 
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cases). 

 It permits isolation of structural phenomena and results interpretation 

contrary to the reduced oversight of the 3-D FEM models (quantities such as 

rotation, warping parameter, stress resultants etc. are also evaluated in 

contrast to solid model which yields only translations and stress 

components). 

 It allows straightforward model handling (support modeling and external 

loading are easily applied). 

 It avoids difficulties in discretizing a complex structure, while the resulting 

increased number of DOFs of the 3-D models leads to severe or unrealistic 

computational time. 

 It avoids difficulties in discretizing a structure including thin-walled 

members (shear-, membrane-locking phenomena). 

 It facilitates parametric analyses (solid modeling often requires construction 

of multiple models).  

 It does not require shape functions for the kinematical components; hence 

the minimum number of elements can be employed, while the accuracy of 

function derivatives is not compromised. 

 The use of shell elements cannot give accurate results since warping of the 

walls of a cross section cannot be taken into account (midline model). 

Comparing to straight beam formulations, the behaviour exhibited by curved 

members is far more complex regarding twist deformations. It is well known, 

that in case of a horizontally curved beam under transverse loading not only 

vertical displacement but twist deformation with respect to its longitudinal axis 

arises as well. Regarding curved beam formulations, a series of straight-line 

segments is generally used in practice in order to approximate the curved 

geometry, though ignoring warping transmission between these segments. 

Vlasov [20] presented a solution for curved beams with open arbitrary cross 

sections. Then, Dabrowski [21] gave an analysis for closed box-shaped cross 

sections. Having in mind the above, it is easily concluded that the influence of 

shear lag phenomenon due to both flexure and torsion, which is not constant 

along the beam length, should be also considered for curved geometries. The 

early curved-beam models that have been formulated are either restricted to the 

analysis of only the beam behaviour in the plane of curvature [22] or do not take 

into account secondary shear deformation effect caused by nonuniform warping 

[23, 24], while other efforts consider only doubly symmetric cross sections [25]. 

In general, even in recent or past years, although the planar problem has been 

extensively studied, comparatively little work has been done concerning the 

general three dimensional, non-planar, or coupled lateral-torsional responses of 

curved beams [22, 25-28]. Regarding the distortional analysis related to the 

intermediate diaphragms, which is more important for box girders, the number 

of researches is quite limited. The study related to the distortional analysis of 
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box girders was initiated by Dabrowski who first formulated the distortional 

phenomenon of box members with a symmetric cross section [29]. Later and 

more recently, other research efforts were undertaken regarding the distortional 

analysis of the structures to give design guidelines on the intermediate 

diaphragms. Park et al. in [30] and [31] developed a straight and a curved box, 

respectively, beam finite element having nine degrees of freedom per node in 

order to propose tentative design charts for adequate maximum spacing of 

intermediate diaphragms. However, in most of these studies, the placement of 

diaphragms was not related whether to dynamic property analysis or dynamic 

response analysis. 

When compared to the effort involved in static analysis, there has not been 

much effort put into the dynamic analysis of curved box girder bridges [32]. 

The geometric complexities and the spatial coupling effect between bending 

and torsion make the analysis of curved bridges difficult. Bridge design codes 

usually provide guidance for the dynamic analysis of straight bridges (dynamic 

amplification factor, natural frequencies, modelling of vehicles, placement of 

diaphragms etc.). These design recommendations have been used by some 

designers for curved bridges, even though some researches carried out [33-35] 

revealed that need to be reviewed. When bridges are curved, different kinds of 

loads can cause lateral bending and torsional modes of vibration in addition to 

the common longitudinal or flexural modes of vibration and so there are still 

many possible as well as crucial problems to be investigated regarding the 

dynamic response, for example, forced vibration due to moving loads and 

earthquake, vehicle-bridge coupling vibration, and wind-induced vibration [36-

38]. Some research efforts analyzed out-of-plane vibrations of beams either 

with uniform or varying cross section and curvature [39,40]. In other studies, 

the dynamic responses of thin-walled curved box girder bridges due to truck 

loading have been investigated. The curved box girder bridges has been 

numerically modelled using finite elements which take into account the 

torsional warping, distortion and distortional warping [41,42]. However, most 

of the previous models have been formulated for specific type of loading and 

cross section either considering or not some higher order phenomena. 

In this study, the dynamic generalized warping problem of horizontally 

curved beams of arbitrary cross section, loading and boundary conditions is 

presented. This beam element formulated is employed in the analysis of curved 

bridge decks of open or closed (box-shaped) cross section, taking into account 

nonuniform warping and shear deformation effects (shear lag due to both 

flexure and torsion). Except for these effects, curvature influences also the 

internal forces and deformations of the curved continuous beam, even for dead 

loading, due to the fact that the curved beam produces coupling between axial 

force, bending moments and torque, leading to the development of both angle of 

twist and displacement in the radial direction [45]. The numerical solution of 

the problem is obtained by Isogeometric tools, either integrated in the Finite 
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Element Method (FEM) [43] or in a Boundary Element based Method (BEM) 

called Analog Equation Method (AEM) [44]. To the authors’ knowledge 

Isogeometric analysis is for the first time employed in the design of curved 

bridges with higher order beam theories, especially combined with a BEM-

based method. The developed horizontally curved model takes into account 

simultaneously in-plane and out-of-plane flexures, extension and torsion and 

permits the investigation of their coupling. The structure (e.g. bridge deck) is 

subjected to the combined action of arbitrarily distributed or concentrated axial 

and transverse loading, as well as to bending, twisting and warping moments. 

Its edges are subjected to the most general boundary conditions, including also 

elastic support. Nonuniform warping distributions are taken into account by 

employing four independent warping parameters multiplying a shear warping 

function in each direction and two torsional warping functions, which are 

obtained by solving corresponding boundary value problems, formulated 

exploiting the longitudinal local equilibrium equation. In this study, the cross 

section is considered not deformable in its plane through the presence of a 

sufficient number of diaphragms along the bridge deck, preventing distortion. 

Design guidelines related to the intermediate diaphragms have been provided to 

prevent from excessive distortional warping in the longitudinal direction and 

transverse bending deformation along the cross section perimeter. Thus, fixed 

values of the stress ratio of the distortional warping normal stress to the bending 

normal stress are used. Moreover, having in mind that a rigid diaphragm is 

usually placed in the sections over each pier, both the angle of twist and 

warping are prevented at these places (bimoment has nonzero values at the 

support sections). The assessment of these regulations is carried out in this 

research effort through numerical examples and parametric studies. This could 

be a natural starting point for the investigation of distortional effects’ impact on 

the analysis of curved bridges. Additional degrees of freedom in order to take 

into account distortional warping are part of the subsequent research. By 

employing a distributed mass model system accounting for longitudinal, 

transverse, rotatory, torsional and warping inertia, ten boundary value problems 

with respect to the variable along the beam time-dependent 1-D kinematical 

components are formulated. Free vibration characteristics and responses of the 

stress resultants and displacements to static, moving and earthquake loading 

have been studied. 

The essential features and novel aspects of the present formulation compared 

with previous ones are summarized as follows. 

i. The developed beam formulation is capable of the complete analysis (static- 

[45] and dynamic-present formulation) of spatial curved beams of arbitrary 

closed or open cross section with one plane of constant curvature (either 

small or great) considering flexural-torsional shear lag effects and transverse 

loading to the plane of curvature (as is usually the case in practice). The 
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necessity to include nonuniform warping and STSD effects in the dynamic 

analysis of curved bridge decks is demonstrated (for the static analysis refer 

to [45]).  

ii. The numerical solution of advanced beam theories and its application to the 

analysis of horizontally curved bridges is based on b-splines [46-47] and 

NURBS (Isogeometric Analysis) offering the advantage of integrated 

computer aided design (CAD) in the analysis. Comparing to the previous 

works of the authors [46-47], where straight beam formulations examined, 

regarding the use of Isogeometric tools, the present NURBS’ formulation 

allows the integration of the initially curved geometry (which was not 

previously the case) in the static and dynamic analysis of the advanced beam 

element employing the same basis functions for the representation of the 

curve at both deformed and undeformed state. In addition to this, the order of 

the basis functions is not predefined and can be adjusted by the user.  

iii. The assessment of the design guidelines which specify the maximum 

spacing of intermediate diaphragms through comparisons of the proposed 

curved model to the corresponding solid or plate ones and some parametric 

studies is a first step towards suggesting further provisions and limitations on 

the application of these regulations. 

Numerical examples are worked out to illustrate the method, designate its 

efficiency, accuracy and computational cost, as well as verify its integrity 

comparing with the results of traditional methods used for the analysis of 

bridges. NURBS and b-splines of various degrees have been employed. Knot 

insertion and degree elevation are proved to be very beneficial in refining the b-

spline curve and increasing the accuracy [43]. In addition to this, different radii 

of curvature have been applied to the model in order to investigate their impact 

on the arising internal forces. 

 

2. STATEMENT OF THE PROBLEM 

2.1 Curved beam model and generalized warping  
Let us consider a curved prismatic element of length L  with an arbitrarily 

shaped cross section of homogenous, isotropic and linearly elastic material with 

modulus of elasticity E  and shear modulus G , occupying the region   of the 

yz  plane with finite number of inclusions (Fig.1). The cross section can also be  
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(a) 

 

(b) 

Figure 1. Prismatic curved beam under axial-flexural-torsional loading (a) of an arbitrary 

homogenous cross section occupying the two dimensional region   (b). 

 

considered as composite. Let also the boundary of the region be denoted by. 

This boundary curve is piecewise smooth, i.e. it may have a finite number of 

corners. In Fig.1 CXYZ  is the principal bending coordinate system through the 

cross section’s centroid C , while Cy , Cz  are its coordinates with respect to 

Sxyz  reference coordinate system through the cross section’s shear center S . 

It holds that Cy y Y   and Cz z Z  . The initial radius of curvature is 

considered constant, is denoted by R  and is parallel to Z  axis. The beam 

element is subjected to the combined action of arbitrarily distributed or 

concentrated axial loading ( )x xp p X  along X  direction, transverse loading 
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( )y yp p x
 
and ( )z zp p x  along the y , z  directions, respectively, twisting 

moments ( )x xm m x
 along x  direction, bending moments ( )Y Ym m x , 

( )Z Zm m x  along Y , Z  directions, respectively, as well as to warping 

moments (bimoments) ( )P P
x x

m m x
 

 , ( )P P
Y Y

m m x
 

 , ( )P P
Z Z

m m x
 


 
and 

( )S S
x x

m m x
 

  (Fig.1) [1]. The possible external loading of warping moments 

is defined in [45]. 

Under the action of the aforementioned arbitrary external loading and of 

possible restraints, the beam member is leaded to nonuniform flexure and/or 

nonuniform torsion. Starting with the flexural behavior of the beam, the 

following remarks can be made. It is well-known that the bending moment at a 

beam cross section represents the distribution of normal stresses due to bending 

(primary normal stresses 
P
xx ). Due to the aforementioned bending moment 

variation along the beam length (nonuniform bending), shear stresses arise on 

horizontal sections of an infinitesimal curved beam element (Fig.2), 

equilibrating the variation of normal stresses due to bending. Cauchy principle 

dictates that corresponding shear stresses arise on the plane of the cross section 

as well. If the assumption that plane sections remain plane after deformation 

(Euler-Bernoulli or Timoshenko beam theories) is maintained, the arising shear 

stresses obtain a uniform distribution over the section [1]. However, this 

distribution violates local equilibrium since the requirement of vanishing 

tractions xn  on the lateral surface of the beam is not satisfied. Thus, the 

aforementioned shear stresses exhibit a nonuniform distribution over the cross 

section’s domain so that both local equilibrium and vanishing tractions xn  on 

the lateral surface of the beam are satisfied. These nonuniform shear stresses 

will be referred to as primary (or St.Venant) shear stresses ( P
xy , 

P
xz ) and lead 

the cross section to warp. Furthermore, due to the nonuniform character of this 

warping along the beam length a secondary normal stress distribution 
S
xx  is 

developed. This normal stress distribution is responsible for the well-known 

shear lag phenomenon and it is taken into account by employing an independent 

warping parameter multiplying the warping function, which depends on the 

cross sectional configuration. The nonuniform distribution of secondary normal 

stresses 
S
xx  along the length of the beam results in the development of 

secondary shear stresses 
S
xy , 

S
xz , which equilibrate the variation of 

S
xx  at an 

infinitesimal beam element. The above remarks are also valid for the problem of 

nonuniform torsion taking into account secondary torsional shear deformation 
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effect – STSDE [1, 13 and 14]. 

 

 

Figure 2. Primary stress of infinitesimal curved beam element and additional terms due to 

curvature effect. “Perturbed” straight beam formulation.  

 

Within the above described context, in order to take into account nonuniform 

flexural and torsional warping (including shear lag effect due to both flexure 

and torsion), in the study of the aforementioned element at each node of the 

element ends, four additional degrees of freedom are added to the well-known 

six DOFs of the classical three-dimensional frame element. The additional 

DOFs include four independent parameters, namely  x ,  Y ,  Z , x  
multiplying a shear warping function in each direction ( Y ,  Z ) and two 

torsional warping functions ( x ,  x ), respectively. These DOFs describe the 

“intensities” of the corresponding cross sectional warpings along the beam 

length, while these warpings are defined by the corresponding warping function 

(P
Y , P

Z , P
x ,   S

x ), depending only on the cross sectional configuration. Thus, 

the “actual” deformed configurations of the cross section due to primary (in 

each direction) shear and primary, secondary torsional warpings are given as  

   , ,P
Y Yx t y z  ,    , ,P

Z Zx t y z  ,    , ,P
x xx t y z 

 
and     , ,S

x xx t y z 
 
at 

any time instant and position along the beam longitudinal axis, respectively. 

Moreover, additional terms are added due to curvature effect (Fig. 2) and the 
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curved beam can be treated as a “perturbed” straight beam avoiding a more 

refined treatment, which would be more beneficial to geometries with large 

curvatures. Force F in Fig.2 stands in general for any additional vector (even 

displacement or strain) that will be added as a result of the differential 

geometry. Finally, the corresponding stress resultants of the aforementioned 

additional DOFs are the warping moments P
Y

M


, P
Z

M


, P
x

M


, S
x

M


 

(bimoments) along the beam length, arising from corresponding normal stress 

distributions. These bimoments due to the aforementioned warpings constitute 

additional “higher order” stress resultants, which are developed in the 

nonuniform shear and torsion theories.  

Within the context of the above considerations and for rigid cross section with 

respect to in-plane deformation, the displacement components of an arbitrary 

point of the beam at any time instant are given as  

     

         
primary

, , , , , , , , ,

, , , , ,

P S

P
Y Z x S

u x y z t u x y z t u x y z t

u x t x t Z x t Y x t y z   

  

  

 

           
secondary

, , , , , ,P P S
Y CY Z CZ x Sx t y z x t y z x t y z                                (1a) 

     , , , , ,xv x y z t v x t z x t   

     , , , , ,xw x y z t w x t y x t                             (1b,c) 

where u , v , w   are the axial, transverse and radial beam displacement 

components with respect to the Sxyz  system of axes, while 
Pu , 

Su , denote 

the primary and secondary longitudinal displacements, respectively. Moreover, 

 ,v x t ,  ,w x t   describe the deflection of the centre of twist S , while  ,u x t  

denotes the “average” axial displacement of the cross section.  ,x x t
 
is the 

angle of twist due to torsion, while  ,Y x t ,  ,Z x t  are the angles of rotation 

due to bending about the centroidal Y , Z  axes, respectively.  ,x x t , 

 ,x x t  are the independent warping parameters introduced to describe the 

nonuniform distribution of primary and secondary torsional warping, while 

 ,Y x t ,  ,Z x t  are the independent warping parameters introduced to 

describe the nonuniform distribution of primary warping due to shear.  

After establishing the displacement field, the strain-displacement relations 

will be used for the curved beam element described in the previous section. The 

general shell theory for cylindrical shells [48] can also explain the occurrence of 
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additional terms. More specifically, the additional terms due to curvature 

regarding the axial strain  xx  are 
w

R
 (which stands for the increase in length 

due to the radial displacement w  according to [49]) and x

R


 (which is the 

decrease in the bending curvature with respect to Z  axis). Thus, assuming 

1
Z

R
  [28] for the strain in the tangential direction in cylindrical coordinates, 

the axial strain-displacement relation is given as 

, , , , ,

primary

1 ( ) Px
xx x x Y x Z x x x S

w Z w
u u Z Y

R R R R


    


     

               
     

  

 , , ,

secondary

1P P S
Y x CY Z x CZ x x S

Z

R
     


  

    
 




                                                             (2) 

According to the shear components of strain  

     , , , , ,xy x y x x x yv u v z u       

     , , , , ,xz x z x x x zw u w y u                            (3a,b) 

setting as 

,
P Z
x x x

R


           ,

P
Z x Y

u
w

R
            ,

P
Y x Zv           (4a,b,c) 

,
S P Z
x x x x x x

R


          

   
,

T S Z
x x x x x x x

R


                                     (4d,e) 

,
S
Z Y x Y

u
w

R
               ,

S
Y Z x Zv                      (4f,g) 

and neglecting Z

R
 effect for shear strains (viewed as higher order term by 

itself), the shear strain-displacement relations are given as 
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      , , , , ,

primary

P P P P P P
xy Z y CY y Y y CZ y x S y

m m m
Z Y z                  
          

 

          , , , , ,

tertiarysecondary

S P S P S P S T S
Z CY y Y CZ y x S y S y x S y

m m m m m
               

      

  

(5a) 

 

      , , , , ,

primary

P P P P P P
xz Z z CY z Y z CZ z x S z

m m m
Z Y y                 
          

 

          , , , , ,

tertiarysecondary

S P S P S P S T S
Z CY z Y CZ z x S z S z x S z

m m m m m
               

      

    

(5b) 

It is worth here noting that in eqn. (4a), the term Z

R

  has been added to the 

primary shear strain due to torsion 
P
x  according to the concept presented in 

Fig. 2. Additionally, the primary transverse shear strain 
P
Z  due to flexure in XZ 

plane (which is the plane of curvature) is given in eqn. (4b), when employing 

the equations of general shell theory [48] and considering that the Kirchhoff 

hypothesis is not valid ( ,x Yw  ). On the contrary, the primary transverse 

shear strain 
P
Y  due to flexure in XY plane is not affected by the curvature and 

is given in eqn. (4c). The above mentioned expressions of shear strains are also 

analytically derived according to the refined theory of thick cylindrical shells 

presented in [50]. Finally, the secondary and tertiary shear strains due to 

primary and secondary torsional warping of the cross section are given in eqns. 

(4d,e), respectively, while similarly, the secondary transverse shear strains due 

to warping in XZ and XY planes of the cross section are given in eqns. (4f,g) , 

respectively.  

Employing the Hooke’s stress-strain law, the resulting components of the 

Cauchy stress tensor can be obtained after substituting the components of the 

strain tensor given in eqns. (2, 5) as xx xxE  , xy xyG   and xz xzG  . 

However, as stated above, attention should be paid to the fact that the terms 

,
S P
Z CY iG  , ,

S P
Y CZ iG  , ,

T S
x S iG   ( ,i y z ) are not capable of representing an 

acceptable shear stress distribution, leading to violation of the longitudinal local 

equilibrium equation and the corresponding zero-traction condition on the 

lateral surface of the beam. Thus, a correction of stress components is 

performed without increasing the number of global kinematical unknowns 
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according to [1] and [45]. In order to establish the differential equations of 

equilibrium based on the corrected shear stresses, the principle of virtual work 

is employed. The geometric constants of the curved beam’s cross section are 

given and explained in [45]. The stress resultants expressed in terms of the 

kinematical components can be derived according to [1] and [45]. Using the 

expressions of the strain components (eqns. (2, 5)), the definitions of the 

stresses and applying the principle of virtual work or any other variational 

principle following standard arguments in the calculus of variations, the 

governing differential equations for the curved beam in terms of the kinematical 

components can be derived. Thus, the local stiffness matrix  tk of the spatial 

curved beam can be evaluated after solving the system of the linear equations. 

Finally, substituting equations of stress resultants to the differential equations of 

the curved beam, the equations of equilibrium of the beam are derived as 

,
z

x x

Q
N p

R
                                                (6a) 

,y x yQ p          
,z x z

N
Q p

R
                                (6b,c) 

,
t

Z x y Z

M
M Q m

R
            ,Y x z YM Q m                     (6d,e) 

,P P
CZ CZ

S
yx

M Q m
 

          
,P P

CY CY

S
zx

M Q m
 

                    (6f,g) 

,
Z

t x t

M
M m

R
                                              (6h) 

,P P
S S

S T
t tx

M M M m
 

          
,S S

S S

T
tx

M M m
 

                   (6i,j) 

where the externally applied loads are related to the components of the traction 

vector applied on the lateral surface of the beam xt , yt , zt  as 

  d , , ,i ip x t s i x y z


                                      (7a) 

  dt z ym x t y t z s


                                         (7b) 

  dY xm x t Z s


           dZ xm x t Y s


                       (7c,d) 

    d , , , ,P P P S
i x S CY CZ Sm x t i s i    


                            (7e) 

The governing differential equations are subjected to the corresponding 

boundary conditions, which are given as 

1 2 3ba u N          1 2 3byv V          1 2 3bzw V            (8a,b,c) 

 1 2 3Z bZM               1 2 3Y bYM                          (8d,e) 
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1 2 3P
CZ

Z b
M


             1 2 3P

CY
Y b

M


                           (8f,g) 

1 2 3x btM             1 2 3P
S

x b
M


         

1 2 3S
S

x b
M


          (8h,i,j) 

at the beam ends ( 0,x L ), where the reaction forces bN , byV , bzV , bZM , 

bYM , P
CYb

M


, P
CZb

M


, btM , P
Sb

M


, S
Sb

M


 are the stress resultants at the 

beam ends. 

Finally, , , , , , , , ,k k k k k k k k k k                   ( 1,2,3k  ) are functions 

specified at the boundaries of the beam ( 0,x L ). The boundary conditions 

(eqns. (8)) are the most general boundary conditions for the problem at hand, 

including also the elastic support. It is apparent that all types of the 

conventional boundary conditions (clamped, simply supported, free or guided 

edge) can be derived from these equations by specifying appropriately these 

functions (e.g. for a clamped edge it is  

1 1 1 1 1 1 1 1 1 1 1                   , 

2 3 2 3 2 3            

2 3 2 3 2 3 2 3 2 3 2 3 0                       ). 

 

2.2 Curved beams and equations of motion 
In order to derive the differential equations of motion with respect to the 

kinematical components, the terms of inertia contributions 

 mass , , , dtt tt ttV
W u u v v w w V        have to be added in the previous 

and constitutive equations should be employed.   is the density of the material 

and , ,u v w  are the generalized displacements as previously described. Thus, 

the generalized vibrational beam behaviour is described by the differential 

equations given in eqns. (9) and the spatial mass matrix  tm  can finally be 

derived. Unlike the stiffness matrix and mass matrix of structure, it is not 

necessary to construct the global damping matrix from the element damping 

matrix by assembling technique and thus no damping matrix of element is 

needed to be derived. Much commercial software employs Rayleigh damping 

which is a linear combination of mass matrix and stiffness matrix. For the 

proposed curved beam formulation damping is neglected.  

 

, , ,
, ,2

,

2
x xx xYY

xx Y xx

P S S
Z Z x Y Z Y

w u wEI
EA u

R R R R

G u G
A A w A

R R R



 

   
       

   

 
     

 
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  ,S S S T S T
CY S CY S CY S

Z
x x x x

G G
D D D

R R R


  

     

 
     

   

,

inertial contribution

tt xAu p                                                                                       (9a) 

 

  

 

, , ,

,
, , ,S S S T S T

CZ S CZ S CZ S

P S S
Y Y xx Z x Y Z x

Z x
x x x xx x x

G A A v GA

G D D GD
R

 


  

     

   

 
     

   

 , ,

inertial contribution

tt C x tt yA v z p       (9b) 

 

   ,
, , , S S S T

CY S CY S

xP S S
Z Z xx Y x Z Y x

u
G A A w GA G D D

R
 

   

 
        

 

,
, , , ,S T

CY S

Z x
x x x xx x x x

EA w
GD u

R R R


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 

   
        

                     

 
 ,

, , ,2 2

inertial contribution

2
xYY

Y x tt C x tt z

uEI w
A w y p

RR R
  

 
      

 
                                 (9c) 

 

  

 

,
, ,

,S S S T
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GD D D v
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 
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 

 
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, ,

inertial contribution

T P Z
t x t x x ZZ Z tt Z

G G
I I I m

R R R


   

 
     

 
                       (9d) 
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,

inertial contribution

YY Y tt YI m                                                                                      (9e) 
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inertial contribution

P P P S P P P
CZ S CZ S CZ CZ CZ

x tt x tt Z ttI I I m
      
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The above governing differential equations except for the boundary conditions 

(eqns. 8) are also subjected to the initial conditions (  0,x L ) 

   0,0 u x u x
  
            , 0,,0t tu x u x                         (10a,b) 

              
   0,0 v x v x                 , 0,,0t tv x v x                        (10c,d) 

   
   0,0Z Zx x              , 0,,0Z t Z tx x                     (10e,f) 

        0,0 w x w x               , 0,,0t tw x w x                    (10g,h) 

   0,0Y Yx x                , 0,,0Y t Y tx x                     (10i,j) 

   0,0 x xx x 
 

           , 0,,0x t x tx x                      (10k,l) 

   0,0x xx x              , 0,,0x t x tx x                   (10m,n) 

   0,0x xx x              , 0,,0x t x tx x                    (10o,p) 

   0,0Y Yx x            , 0,,0Y t Y tx x                      (10q,r) 

 
   0,0Z Zx x            , 0,,0Z t Z tx x                       (10s,t) 

After establishing the stiffness and mass matrices of the spatial curved beam 

element the equation of motion in matrix form can be given as follows  

                                             { } { }t i t i tm U k U p                                 (11) 

where  tm , tk  are the generalized mass and stiffness matrices, respectively. 

 tp  is the load vector which is equal to  0  for the free vibration case. { }iU  

is the vector containing the second derivatives of the different kinematical 

components with respect to time while{ }iU  is the generalized unknown vector 

containing the values of the kinematical components and their first derivatives, 

which will be evaluated numerically.   
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The natural frequencies and modes in which the beam vibrates for the different 

motions can be obtained by separation of variables  ,iu x t   which is assumed 

to have the form 

                                            , i t
i iu x t u x e                                         (12) 

where  iu x  is a function of only the spatial variable x , while 1i   , and 

  is the natural frequency. Inserting (12) into (11) and dividing by the 

common exponential term results in the following typical generalized 

eigenvalue problem  

                                              2 0t t ik m u                                      (13) 

which can be tackled through any solver. 

 

3. NUMERICAL SOLUTIONS FOR CURVED BEAMS 

3.1 A BEM-based method combined to isogeometric analysis  

The evaluation of the kinematical components  ,u x t ,  ,v x t ,  ,w x t , 

 ,x x t ,  ,Y x t ,  ,Z x t ,  ,x x t ,  ,Y x t ,  ,Z x t  and  ,x x t
 

is 

accomplished using the AEM [44]. These have continuous derivatives up to the 

second order with respect to x  at the interval  0, L  and up to the first order at   

0,x L
 
and up to the second order with respect to t , satisfying the initial-

boundary value problem described by the coupled governing differential 

equations of equilibrium (eqns. (9)) along the beam, the initial conditions (eqns. 

(10)) and the boundary conditions (eqns. (8)) at the beam ends 0,x L . 

According to this method, for these functions, the following relation is valid 

                                                
2

2

( , )
( , )i

i

d u x t
q x t

dx
                                         (14) 

where ( , )iu x t  are the different kinematical components and ( , )iq x t  are the 

corresponding fictitious loads   ( 1,...,10i  ). Eqns. (14) are quasi-static, i.e. the 

time variable appears as a parameter and they indicate that the solution of eqns. 

(9), (8), (10) can be established by solving eqns. (14) under the same boundary 

conditions (eqns. (8)), provided that the fictitious load distributions  ( , )iq x t   (

1,...,10i  ) are first established. Isogeometric tools have been employed to 

approximate both geometry and the fictitious load curve.  

The fundamental solution of eqn. (14) is a partial solution of the following 

differential equation 

                                          
2

i
2

d u ( x, )
( x )

dx


 



                                        (15)     
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where iu ( x, )
and its derivatives are given as 

                                    1

( , ) 1
( , ) sgn

2

idu x
x r

dx






                                 (16a) 

                                         2

1
( , ) ( , )

2
ix u x r                                      (16b) 

with , ,r x x    points of the beam. 

Employing this fundamental solution, the integral representation of the 

kinematical components is obtained as 

2 2 10
0

( , )
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

L
L

i
i i i

du x t
u t x q x t dx x x u x t

dx
   

 
      
      (17) 

Eqn. (17) implies that if ( , )iq x t  and all boundary values ( ( , )iu x t , ( , )idu x t

dx
) at 

the beam ends 0, L are known, ( , )iu x t  can be calculated at any internal point 

of the beam. Differentiating eqn. (17), the expressions for the derivatives of 

( , )iu x t  are derived as 

          1 10
0

( , ) ( , )
( , ) ( , ) ( , )

L
L

i i
i

du t du x t
x q x t dx x

dxd


 



 
      
          (18) 

Then, ( , )iq x t   is either approximated with constant elements or quadratic 

elements [45].  The introduction of b-splines or NURBS in the above mentioned 

expressions can be done by substituting ( , )iq x t  with the polynomial 

representation of a quadratic b-spline or NURBS with a uniform knot vector Ξ 

with ξ ϵ [0,1], which is the parameter space similar to the classic FE 

subdivision. The first and last knot values are repeated depending on the b-

spline degree p  and their multiplicity is usually 1p  . In one dimension, basis 

functions formed are interpolatory at the ends of the parameter space interval 

(knot vector with multiplicities). However, nonuniform knot vectors and 

repeated knots can also be used with NURBS. According to [51], the NURBS 

basis functions can be expressed in terms of b-splines basis defined by the Cox-

De Boor recursive formula 

 , 0

1
( )

1
, 0

0
i

i iif
N p

otherwise




      
   

  

                    (19a) 

, , 1 1, 1

1
( ) ( ) ( )

1 1
, 1i p i p i p

i i p

i p i i p i
N N N p  

 
   

   

    
 
     

    (19b) 

Thus, the basis functions can be derived for the quadratic b-spline as follows.  
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2

( )0,2 0,1 1,1

0 1 (1 ) 0

0 0 1 0 0

if
N N N

otherwise

  


         
     

     

         (20a) 

( )1,2 1,1 2,1

0 1 2 (1 ) 0

1 0 1 0 0

if
N N N

otherwise

   


         
     

     

       (20b) 

2

( )2,2 2,1 3,1

0 1 0

1 0 1 1 0

if
N N N

otherwise

  


        
     

     

            (20c) 

The quadratic b-spline curve is defined by 

 
2

,2

0

( ) ( )i i ii

i

C N P 


                                         (21) 

where iiP  are the control points 0iP , 1iP  and 2iP
 
of the initial control polygon 

shown in Fig. 3. Substituting basis functions to eqn. (21), the expression of the 

fictitious load ( , )iq x t  at any time instant is derived as 

 2 2 2
0 0 0 1 1 2( , ) 2 2 2i i i i i i iq x t P xP x P xP x P x P                   (22) 

Three equidistant collocation points have been used, which are presented in the 

same figure with the control points (Fig. 3). These points are on the longitudinal 

axis of the curved beam.  

 
Figure 3. Beam element, representation of fictitious load q(x,t), initial control and collocation 

points for a kinematical component. 

 

Considering the cubic b-spline, the expression for the fictitious load ( , )iq x t  is 

derived as 
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3 2 2 3

0 1 2 33 3 3 3

( ) 3 ( ) 3 ( )
( , )i i i i i

l x x l x x l x x
q x t P P P P

l l l l

  
            (23) 

where iiP   are the control points 0iP , 1iP , 2iP and 3iP . 

If four equidistant collocation points for discretization are used, the control 

polygon of the fictitious load curve and the collocation points are presented in 

Fig. 4. 

 

 
Figure 4. Representation of fictitious load q(x,t) for the cubic b-spline, control and collocation 

points for a kinematical component (the control polygon is presented in dashed line). 

 

Similarly, the expression for the fictitious load ( , )iq x t  for the quartic B-spline 

is derived as 
4 3 2 2

0 1 24 4 4

3 4

3 44 4

( ) 4 ( ) 6 ( )
( , )

4 ( )

i i i i

i i

L x x L x x L x
q x t P P P

L L L

x L x x
P P

L L

  
  


 

              (24) 

where iiP   are the control points 0iP , 1iP , 2iP , 3iP  and 4iP  . 

Eqns. (17) and (18) written for the boundary points constitute a system of four 

simultaneous integral equations, while the boundary conditions (8) are 

formulated in matrix form giving four more equations. Combining the 

aforementioned equations, the following system is derived 

   
   

      11 12 1 1

21 22 2 2

{ } {0}{ }

{ } { }{0}

i
i i

i i

E E u D
E u D T

E E u T

      
          
     

     (25) 

where [ ]E  is a square 40x40 matrix, { }iu ,{ }D ,{ }iT are 40x1 vectors, 11[ ]E , 
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12[ ]E  are 20x20 known coefficient matrices and 1{ }D  is 20x1 known 

coefficient vector, all given in the following equations. 

                                      21 1 22 2 2[ ]{ } [ ]{ } { }i iE u E u T                               (25a) 

                                   

1

2 0
0

2 1

2 0
0

( , ) ( , )
{ }

( , ) ( , )

i

i

i

x q x t dx
T

x q x t dx





 
 

  
 
 





                              (25b) 

                                              '

1{ } (0) (0)T

i i iu u u                              (25c) 

                                              '

2{ } (1) (1)T

i i iu u u                              (25d) 

                               2 0 1 0

21

2 1 1 1

(0, ) ( (0, ) 1)

(0, ) (0, )
E

 

 

    
    

                       (25e) 

                                2 0 1 0

22

2 1 1 1

(1, ) (1, )

(1, ) ( (1, ) 1)
E

 

 

  
     

                        (25f) 

                                    11 1 12 2 1[ ]{ } [ ]{ } { }i iE u E u D                              (25g) 

                            
 

    
2

0
{ } { }

{ }
i i i i

i

T P T F P
T

 
   
 

                      (25h) 

Thus, the following system is derived from eqns. (25) and (25h) 

                   
1 1

i i i iE u D F P u E D E F P
 

           (26) 

With known values at beam ends and applying the integral representations (17) 

and (18) at the internal collocation points, the following can be calculated 

    { } [ ] [ ]i i iU A P C u                                    (27a) 

    ' '{ } [ ] [ ']i i iU A P C u                                   (27b) 

where 
'( , )i iU U  are the vectors containing the values of the different 

kinematical components and their first derivative at internal collocation points. 

The coefficients of the square matrices [ ],[ ']A A  are given by the numerical 

solution of the integrals in eqns. (28a, b). The [ ],[ '],[ ''],[ ''']C C C C  matrices 

are given in eqns. (28c, d).  

                                         2( , ) ( , )
j

i iA x q x t dx


                                  (28a) 

                                    1' ( , ) ( , )
j

i iA x q x t dx


                              (28b) 
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               
2 1 1 1 2 1 1 1

2 2 1 2 2 2 1 2

2 3 1 3 2 3 1 3

(0, ) (0, ) ( , ) ( , )

(0, ) (0, ) ( , ) ( , )

(0, ) (0, ) ( , ) ( , )

l l

C l l

l l

   

   

   

    
 

    
 
     

          (28c) 

                             

1 1 1 1
'

1 2 1 2

1 3 1 3

(0, ) 0 ( , ) 0

(0, ) 0 ( , ) 0

(0, ) 0 ( , ) 0

l

C l

l

 

 

 

  
     
  
   

                      (28d) 

Substituting eqn. (26) into eqns. (27a, b), the following are derived 

    { } [ ]i iU B P R                                         (29a) 

    '{ } [ '] 'i iU B P R                                      (29b) 

where  

         
1

B A C E F
  

 
                                (30a) 

         
1

' ' 'B A C E F
  

 
                             (30b) 

     
1

{ }R C E D


                                       (30c) 

     
1

{ '} 'R C E D


                                     (30d) 

Then, the stiffness and mass matrices of the beam element, which behavior is 

described by eqns. (9) for the dynamic problem, can be calculated employing 

eqn. (11). Eqns. (9) can be re-written as follows 

          [ ] [ ]t t t t tm B q k B q p                               (31) 

where  tq  in the AEM combined with b-splines or NURBS are the values of 

the control points while [ ]B  contains the coefficients of  B and  'B matrices.  

The diagonal matrix 0[ ]A  is also determined and contains the values of basis 

functions , ( 1... 2... )i jN i n and j p   for the n different collocation points 

and different p-degree b-spline cases. Then,  ,tm  tk  are formulated and eqn. 

(31) is solved. 

Instead of b-splines, NURBS curves in terms of b-spline basis functions can 

be employed in the AEM technique. Their expressions are given in the 

following section.  
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3.2   FEM and NURBS numerical solutions  
The problem described in section 2.1 can be set in the equivalent variational 

formulation through the principal of virtual work and finally derive eqns (9). In 

order to discretize eqns. (9), the displacement field  iu x
 
given in section 3.1 

is approximated by means of polynomial interpolating functions of p-degree as 

extensively is described in [52]. Substituting the displacement approximation 

for each discretization element (n in total), the equilibrium equations in terms of 

the nodal displacements of the finite element mesh can be expressed. Thus, 

 tk  matrix can be obtained by assembling the contributions from the 

individual elements. This can be performed numerically by using the Gauss 

quadrature rule. In order to compute Gauss base points and weight factors an 

algorithm has been employed according to [53]. The same procedure can be 

followed in the AEM technique, with quadrature nodes being the collocation 

points, if the analytical solution of the integrals employed needs to be avoided 

for computational reasons. The assembling of “stiffness” matrix [ ]B
 

is 

different in this case, too. 

As a next step in discretizing eqns. (9), p-degree NURBS interpolating 

functions can be employed for the representation of the displacement field 

 iu x . In this case, curve C given in eqn. (21) has a p-degree NURBS 

representation defined by 

 ,

1

( ) ( )
n

i i p ii

i

C R P 


                                      (32) 

where iiP  are the control points employed for each kinematical component and 

, ( )i pR  , which are the NURBS basis functions, can be expressed as follows  

 
,

,

,

1

( )
( )

( )

i p i
i p n

i p i

i

N w
R

N w










                                   (33) 

where , ( )i pN   are given in eqns. (19) and iw  ( ) are weights related to the 

ith control point and increase the capabilities of the b-splines interpolation 

([43]). Values of the basis functions and their derivatives will be obtained for 

each quadrature node. It should be noted that if all weights are equal, then 

, ,( ) ( )i p i pR N  and curve C is a b-spline curve. In addition to this, the 

geometry of the beam is described by a NURBS structure through an initial 

control polygon given by the following spatial coordinates ( , , , )i i i ix y z w . This 

polygon will be later refined as new knots will be inserted and degree will be 
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elevated in order to achieve more accurate results.  tk  matrix can finally be 

obtained following the same procedure as previously described for the AEM 

technique. 

Non-uniform knot vectors Ξ and repeated knots are the key ingredients of 

NURBS flexibility. In addition to this, among all the properties of NURBS 

interpolation the most interesting is the high degree of continuity ([43]). 

 

4. NUMERICAL EXAMPLES - ASSESSMENT OF DIAPHRAGMS’ 

GUIDELINES  
In order to validate the proposed formulation of the curved beam element 

described above and examine the advantages attained by the use of the methods 

proposed in terms of simplicity, accuracy and computational effort, computer 

programs have been written and representative examples have been studied. The 

numerical results have been obtained employing NURBS, beam FEs and 

constant or quadratic elements for the representation of the AEM fictitious 

loads. Then, the results are compared to those obtained by the application of the 

Finite Element Method (FEM) employing beam, solid (quadrilateral or 

triangular) or plate elements. The computer software FEMAP 2008 [54] has 

been used for this purpose. In addition to these, up to 400 boundary elements 

depending on the cross section type (cross sectional discretization) have been 

employed in order to evaluate the geometric constants with BEM. 

As another part of this section, design guidelines for specifying the 

maximum spacing of intermediate diaphragms have been applied to the 

aforementioned solid models and compared to the proposed one which does not 

take into account distortional effects. Three different examples of box-shaped 

cross sections subjected to different geometric limits have been examined. 

According to thin-walled theory, the upper bounds of these limit sets are 

/ 0.1t d   and / 0.1d L  , where t , d  and L  are the thickness, width and 

length of the curved box-shaped cross section, respectively.  

 

4.1  Extremely thin-walled monosymmetric box-shaped cross section  

( / 0.02t d  , / 0.1d L  ) 
In this example, in order to investigate the importance of warping in the 

analysis of beams as proposed in this study as well as the placement of 

intermediate diaphragms, the static problem of a monosymmetric box shaped 

straight cantilever bridge beam during its erection phase is examined. Its cross 

section is shown in Fig. 5 (
7 24 10E kN m   , 

7 22 10G kN m   - these 

properties have been selected for comparison reasons and give 0  ,

2 47.85kN sec / m ,  10L m  , R   ) under a concentrated load 
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1000yP kN   in the vertical direction eccentrically applied at its free end. In 

Table A.1 of the Appendix the geometric constants of the cross section are 

presented.  

In Fig. 6 a model of the beam implemented in FEMAP  [54]  employing 

FEM quadrilateral solid elements is shown. In the same figure the total 

deflection is also recorded. It is worth here noting that in order to obtain the 

distributions of the kinematical components and stress resultants from the solid 

model, rigid diaphragms were placed in regular distances (20 in total), 

permitting the measurement of rotation angles and translations of the reference 

nodes. The existence of diaphragms also ensured the absence of local 

distortional phenomena of the cross sectional profiles. Results coincide with the 

beam formulation of the present study.  

   
Figure 5.  Box-shaped cross section of the beam of example 4.1. 

 

 
Figure 6.  Model in FEMAP employing 780 quadrilateral solid finite elements. Deflection w(x) is 

displayed along the length of the beam. 

Y 

Z 
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The Guide Specifications for Horizontally Curved Highway Bridges by the 

AASHTO [55] specify the maximum spacing of the intermediate diaphragms 

DL  
as 

1/2

25
200 7500

D

R
L L ft

L

 
  

 
 where L and R denote the span length 

and radius of curvature in feet, respectively. This provision meets the 

requirement that the distortional warping normal stress is limited within 10% of 

the bending normal stress and the transverse bending normal stress is limited to 

137.3MPa or lower. In addition to this, the Hanshin Expressway Public 

Corporation of Japan provided the Guidelines for the Design of Horizontally 

Curved Girder Bridges [56], specifying the maximum spacing of the 

intermediate diaphragms in curved box girder with respect to that in straight 

box girders multiplied by a reduction factor, which is equal to unity for a span 

length less than 60 m. It should be noted here that the boundary conditions and 

the cross section shape are not taken into account for both specifications 

directly.   

According to these guidelines, Fig. 7(a) shows the deformed shape and total 

translation of the beam displayed in Fig. 6 employing 2 diaphragms (one at 

midspan and one at the free edge) while Fig. 7(b) is the same but without the 

employment of any diaphragms. Results of models displayed in Figs. 6 and 

7(a), which are similar to each other, almost coincide with the results obtained 

by the proposed beam formulation. However, it is obvious from Fig. 7(b) that 

the absence of diaphragms leads to a larger total translation by 18% due to the 

development of distortional warping. Thus, the proposed beam formulation can 

predict a highly accurate behavior of the 3d model in terms of simplicity and 

safety and comply with the guidelines without considering any distortional 

effects.  
 

(a) 
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(b) 

Figure 7. Deformed shapes and total vertical translation of the beam of example 4.1 (a) for 2 

diaphragms and (b) without diaphragms. 

 

Then, the same beam is considered curved having the same length and a radius 

of curvature 6.366R m   forming an arc of 90° angle in top view. In Fig. 8 

two models of the beam implemented in FEMAP  [54]  employing FEM 

quadrilateral solid elements are shown. The difference between the two models 

is in the use of diaphragms in the cross section plane. In the first one 13 

diaphragms have been employed while in the second model only one. The 

bridge beams are subjected to a vertical concentrated load 1000yP kN   

applied at the centroid of their free end cross sections. In the same figure the 

total deflections are also recorded. It is worth here noting that the placement of 

the rigid diaphragms along the length of the curved beam becomes quite 

cumbersome due to the complexity of the solid model. In addition to this, much 

more quadrilateral solid elements have been employed comparing to the straight 

beam formulation (Fig. 6) for accuracy reasons. Comparing the deformed 

shapes of the beams, it is obvious that the existence of diaphragms ensures 

indeed the absence of local distortional phenomena of the cross sectional 

profiles along the arc length while the total maximum translation is reduced by 

46%. Due to the very thin-walled structure of the cross section, a plate model in 

FEMAP [54] has also been employed for comparison reasons with the solid 

model and in order to detect any possible locking phenomena present.  

In Table 1 the values of the kinematical components  v x ,  x x  and  Z x  

for the vertical force yP    concentrically applied at the free edge of the beam 

are presented for i) proposed curved beam elements with NURBS (cubic) , ii) a-

1500 quadrilateral plate elements with 13 diaphragms (FEMplate 13 Diaph.), ii) 

b- 1500 quadrilateral plate elements with 1 diaphragm (FEMplate 1 Diaph.), ii) 

c- 1500 quadrilateral plate elements with 2 diaphragms (FEMplate 2 Diaph.) 
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according to guidelines previously mentioned, iii) 10976 quadrilateral solid 

elements with 13 diaphragms in FEMAP 2008 (FEMsolid 13 Diaph.), iv) 10976 

quadrilateral solid elements with 2 diaphragms in FEMAP 2008 (FEMsolid 2 

Diaph.) according to guidelines previously mentioned and v) 10976 

quadrilateral solid elements with one diaphragm in FEMAP 2008 (FEMsolid 1 

Diaph.). Analysis with cubic NURBS gives results closer to the solid model 

with diaphragms as it is expected. The results obtained by the analysis of the 

solid model with diaphragms almost agree with those obtained by the plate 

model with diaphragms (discrepancies around 1%). However, it is important to 

notice that the results obtained by the respective models with only 1 diaphragm 

differ from each other (discrepancies vary from 15 to 23%). The solid model 

seems to be stiffer than the plate one while the different displacement values are 

exclusively related to distortional phenomena (mainly attributed to torsion) 

since the corresponding models with diaphragms (no distortion) show the same 

level of accuracy. 
 

 (a) 

 (b) 

Figure 8. Deformed shapes of models in FEMAP employing 10976 quadrilateral solid finite 

elements and (a) 13 diaphragms or (b) one diaphragm.  
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Table 1.  Kinematical components of the beam of Figure 5 for vertical load 

 

 

 

( )v m  

at x=L 

 

 

( )x rad  

at x=L 

 

 

( )Z rad  

at x=L 

 

4 cubic NURBS 0.4879 -0.0202 -0.0742 

FEMplate 

13 Diaph. 0.4701 -0.0231 -0.0691 

FEMplate 

2 Diaph. 0.5516 
-

0.02902 
-0.0812 

FEMplate 

1 Diaph. 0.9748 -0.0951 -0.1470 

FEMsolid  

13 Diaph. 0.4647 -0.0229 -0.0685 

FEMsolid  

2 Diaph. 0.5346 -0.0279 -0.0790 

FEMsolid  

1 Diaph. 0.8215 -0.0726 -0.1235 

 

It is worth here noting that if diaphragms are placed in the solid model 

according to the guidelines (2 diaph. case), the vertical translation is more than 

the proposed formulation by 8.7%. Additionally, the angle of twist is increased 

by 25% and the angle of rotation due to bending by 6%. Discrepancies are 

slightly larger comparing to the corresponding plate model. The proposed 

curved beam element is obviously more strict regarding the placement of 

diaphragms in terms of safety against distortional effects comparing to solid and 

plate models. This implies the use of more diaphragms comparing to the those 

specified by the guidelines. In addition to this, comparing stresses between 

different solid models, it is proved that the normal stress due to distortion is 

more than the specified 10% of the normal stress due to bending for the 2 diaph. 

model.  

A paramentric study considering different radii of curvature for the same 

beam length and cross section has been conducted and different models have 

been examined. In Table 2 the discrepancies between the proposed curved beam 

formulation and the model with the diaphragmatic arrangement according to the 

Py Lateral 

Loading  
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guidelines have been compiled. It is evident that as the curvature of the beam (

1/ R ) becomes greater, the “error” of the specified diaphragmatic model 

becomes larger in an exponential rate and this rate seems to be greater for 

torsion. In addition to these, considering the solid model with no diaphragms 

and comparing to the other models, it seems that distortional effects are of more 

importance for large curvatures and a more refined treatment should be 

considered. It should also be noted that that the high ratios of the dimensions to 

thickness of the cross section’s walls is also an important factor, especially for 

torsion.  

 

Table 2.  Discrepancies (%) in kinematical components’ values for different 

radii of curvature between the proposed model and those according to 

guidelines 

 

 

(%) 
v  

at 

x=L 

 

(%) 

x  

at x=L 

 

(%) 

Z  

at x=L 

 

R=∞ 0.00 0.64 0.00 

R=28.65m 1.09 1.41 1.06 

R=12.73m 3.03 3.40 1.91 

R=6.37m 8.73 27.60 6.08 

 

The numerical procedure and the dynamic response of the beam are examined 

in the following. Particularly, in Fig. 9 the distribution of the vertical deflection 

 v x for the concentrated load 1000yP kN   in the vertical direction 

eccentrically applied this time at its free end. Curved beam elements proposed 

can accurately give the maximum deflection of the beam model under 

consideration. However, the distribution along the X axis of the arc in plan can 

satisfactorily be described only by the NURBS approximation of the proposed 

beam model due to the fact that the same NURBS functions, as for the 

representation of the kinematical components, have been used to describe the 

geometry of the curved beam and no post processing computations need to be 

done as in FEM beam elements. The discrepancies arising between the 

NURBS’ model and the solid one are probably due to the number of the 

diaphragms used and their positions along the length, which make the solid 

Py eccentric 

Lateral 

Loading  
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model stiffer than it should be. Another reason might be shear locking problem.  

Additionally, the dynamic problem of the aforementioned curved beam has 

been studied and the values of different eigenfrequencies have been compiled in 

Table 3 for the same analysis cases as in the previous Table 1. It is obvious that 

the analysis employing the proposed curved beam formulation with NURBS 

approximation is closer to the FEM solid model with 13 diaphragms while the 

eigenfrequencies of the solid model without diaphragms are quite smaller. 

However, the diaphragmatic model seems to be stiffer than the proposed model 

especially for higher eigenfrequencies. It is also worth noting that convergence 

is obtained with few beam elements when NURBS are employed. 

 

 
Figure 9.  v x distributions derived from the analysis of solid and curved beam models of 

example 4.1. 
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Table 3.  Eigenfrequencies of the beam of Figure 5 

Mode Number 
FEMsolid  

1 Diaph. 

FEMsolid 

2 Diaph. 
FEMsolid  

13 Diaph. 

4 cubic  

NURBS 

10cubic 

NURBS 
1 0.1172 0.1416 0.1548 0.1317 0.1317 

2 0.2556 0.2615 0.2704 0.2191 0.2191 

7 0.3262 0.3644 1.0436 1.1045 1.1042 

8 0.3562 0.3799 1.4233 1.2313 1.2311 

9 0.4022 0.4761 1.5021 - 1.3345 
 

In Fig. 10 the bending moment distribution is plotted for different methods 

employing either the proposed beam elements or the ones used in commercial 

software (Timoshenko beam elements). The proposed method is validated. It is 

worth noting here that when employing NURBS there is no need for post 

processing of data in order to derive stresses and stress resultants as it is the 

case in FEM. This is due to the fact that the same basis functions are used for 

the representation of geometry and kinematical components.  
 

 
Figure 10.  ZM x

 
distributions derived from the analysis of curved beam models of example 4.1 

and printed directly along with the curved model. 

 

Thus, the matter is just to derive deformations and their first derivative 

employing the same NURBS structure for specific locations along the curve of 
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the beam. In addition to this, when employing AEM much more discretization 

elements need to be used for the same accuracy level.  

In Fig. 11 the torsional moment and Bimoment distributions are plotted 

employing the analysis of the proposed beam model with NURBS on the curved 

model directly without any post-processing. Considering commercial FEM 

beam elements secondary Torsional Moments and Bimoments are not 

considered. However, the magnitude of Bimoment near the fixed support is 

around 10% of the total Torsional Moment and should be indeed considered in 

the analysis. In addition to this, secondary Torsional Moment varies from 15 

(near support) to 0% of the total Torsional Moment and should also be 

considered.  
 

 
Figure 11. Torsional Moment and Bimoment distributions derived from the analysis of the 

proposed curved beam model of example 4.1 and printed directly along with the curved model. 

 

Finally, in Fig. 12 the dynamic response of the curved cantilever beam 

previously described is plotted in terms of the tip deflection out of the curvature 

plane. The eigenfrequency of the first mode is 49.08 rad/sec (T=0.0204 

seconds). A static load 2000yP kN   applied at the centroid of the free end 

has been dynamically applied in three different ways, namely suddenly applied 
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for 0.025 seconds, gradually applied for the first 0.005 seconds and gradually 

applied for 0.015 seconds. It is obvious that the amplification is less severe for 

the last case due to the fact that the load rise is more gradual. This is equal to 

1.3 while for the case of the suddenly applied load is equal to 1.95. Regarding 

the other case of gradually applied load but with a shorter rise time, the 

amplification factor is equal to 1.83. Considering a straight beam of the same 

length and loading, the amplification factor for the case of transient response is 

equal to 1.98.  
 

 
Figure 12. Deflection  v x  at the tip of the curved cantilever beam shown in Fig. 8a for different 

cases of dynamic loading. 

 

4.2 Moderately thin-walled monosymmetric box-shaped cross section 

( / 0.086t d  , / 0.086d L  ) 
A cantilever beam of a monosymmetric box-shaped (Fig. 13) cross section                         

( 7 23 10E kN m   , 7 21.5 10G kN m   -high strength concrete, 32,5t / m   

40L m  , 25.465R m  ) under a concentrated load 10000yP kN   

concentrically applied, as this is shown in Fig. 14 is examined in order to 

further validate the proposed beam formulation. In Table A.2 of the Appendix 

the geometric constants of the cross section shown in Fig. 13 are presented. 
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Figure 13.   Box-shaped cross section of the beam of example 4.2.  
 

 
Figure 14. Deformed shape of model in FEMAP employing 2500 quadrilateral solid finite 

elements. 
 

In Table 4 the values of the kinematical components  v x ,  x x  and  Z x  

for the vertical force yP concentrically applied at the free edge of the beam are 

presented for i) proposed curved beam elements with NURBS (cubic), ii) 2500 

quadrilateral solid elements in FEMAP 2008 with 1 or 2 diaphragms (FEMsolid 

1 or 2 Diaph), iii) 2500 quadrilateral solid elements with 16 diaphragms 

according to guidelines of [55] in FEMAP [54] (FEMsolid 16 Diaph.), iv) 2500 

quadrilateral solid elements with 7 diaphragms according to guidelines of [56] 

in FEMAP 2008 (FEMsolid 7 Diaph.) v) 2500 quadrilateral solid elements in 

FEMAP 2008 with 4 diaphragms (FEMsolid 4 Diaph )and vi) 40 quadratic 
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elements in the AEM technique (AEM 40 quad.). It is worth nothing here that 

when using 16 diaphragms, the vertical displacement is reduced by 23% while 

the angle of twist and rotation due to bending are reduced by 10% and 30%, 

respectively, comparing to the arrangement with 1 diaphragm. The differences 

in the corresponding values of the models with 2 and 4 diaphragms from those 

of the model with 1 diaphragm are larger in a disproportionate way when 

comparing the corresponding values of the same models to those of the model 

with 7 diaphragms. In addition to this, the proposed formulation gives results 

closer to the solid model with two diaphragms. Regarding the values of stresses, 

the discrepancies in shear stresses between models with 2, 4 and 7 diaphragms 

are not of much importance in comparison with those in normal stress. 

Additionally, the 2-diaphragmatic model exhibits stresses closer to the model 

with 4 diaphragms than that with 1 diaphragm. These imply that distortional 

effects are not of the same importance as considered in the guidelines and the 

use of the numbers of diaphragms specified make the solid model stiffer than it 

should be in real resulting in uneconomic design practices for a case like this 

one.  
 

Table 4.  Kinematical components of the beam of Figure 13 for vertical load 

 

 

 

( )v m  

at x=L 

 

 

( )x rad  

at x=L 

 

 

( )Z rad  

at x=L 

 

4 cubic NURBS 0.3197 -0.007029 -0.0104 

FEMsolid  

1 Diaph 
0.3547 -0.00867 -0.0115 

FEMsolid  

2 Diaph 
0.3256 -0.00782 -0.0103 

FEMsolid 

7 Diaph. 
0.2914 -0.00756 -0.0090 

FEMsolid 

16 Diaph. 
0.2746 -0.00778 -0.0081 

FEMsolid  

4 Diaph. 
0.3021 -0.00753 -0.0094 

AEM 40 quad. 0.3197 -0.07020 -0.0104 

Py Lateral 

Loading  
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Similarly to previous example, in Fig. 15 the distribution of the vertical 

deflection  v x
 

along the x axis of the curved geometry in plan for the 

concentrated load in the vertical direction mentioned previously. As it is the 

case in the previous example, curved beam elements proposed can accurately 

give the maximum deflection of the beam model under consideration. It is 

worth noting here that the approximation of the  v x
 

distribution when 

employing quadratic elements in the AEM technique exhibits a stiffer behavior 

comparing to NURBS approximation.   

Moreover, the dynamic case is studied and the eigenfrequencies are evaluated 

and compiled in Table 5 for the solid model and the proposed one analysed 

employing NURBS. The values of the proposed formulation are closer to the 

solid model with 1 or 16 diaphragms for the first five eigenfrequencies and 

closer to the solid one with 16 diaphragms for the last three. However, 

regarding the design quantities, the first eigenfrequencies are of main interest. 

Thus, it is implied that distortion can be prevented with few number of 

diaphragms. 

 

Table 5.  Eigenfrequencies of the beam of Figure 13 

Mode Number 
FEMsolid  

1 Diaph. 

FEMsolid  

16 Diaph. 
cubic  

NURBS 

1 0.0488 0.0541 0.0412 

2 0.1408 0.1457 0.1203 

3 0.1905 0.2208 0.2501 

4 0.3002 0.3885 0.3200 

5 0.4643 0.5033 0.4452 

6 0.5309 0.6481 0.6465 

7 0.6299 0.8718 0.7046 

8 0.6797 1.0252 0.9412 

9 0.7125 1.1320 1.1889 

10 0.7361 1.4439 1.3252 

 

In Fig. 16 the distribution of total, primary and secondary Torsional Moments 

are plotted along the length of the curved beam for the concentrated load in the 

vertical direction. In addition to this, the Bimoment distribution has also been 

plotted. It is worth noting here that Torsion and Warping are of the same order 

of magnitude near the support for this specific cross section. Thus, Warping 

effect will cause important discrepancies between the commercial FEM beam 

elements and the one proposed in this study. Secondary Torsional Moment has a 

considerable value near support, too. 
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Figure 15.  v x

 
distributions derived from the analysis of the solid and curved beam models of 

example 4.2. 

 

Figure 16. Torsional Moments and Bimoment distributions derived from the analysis of the 

proposed curved beam model of example 4.2 and printed directly along with the curved model. 
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Considering the curved beam of Fig. 14 with fixed end supports and a load 

20000yP kN   applied at the centroid of the mid span, the amplification 

factor of the transient response for is equal to 1.90 for a system’s period 

T=0.127 seconds (first mode) at time t=0.0675 seconds.  

 

4.3 Concrete monosymmetric box-shaped cross section ( / 0.1t d  ,

/ 0.065d L  ) 
The curved beam of a concrete monosymmetric box-shaped cross section            

(
7 23,25 10E kN m   , 0,1667  - high strength concrete, 

32,5t / m  ,

33L m  , 100R m  ) shown in Fig. 17 is examined either as cantilever or 

clamped for static and dynamic response. In Table A.3 of the Appendix A the 

geometric constants of the cross section are presented. 

 

 

Figure 17.  Box-shaped cross section of the beam of example 4.3. 

 

According to guidelines previously mentioned for the placement of intermediate 

diaphragms, either 5 [55] or 6 [56] diaphragms should be at least employed in 

order to fulfill limitations. Considering a cantilever beam, as the less favorable 

case in terms of boundary conditions, under a concentrated load 3000yP kN   

eccentrically applied at its free end, several diaphragmatic arrangements have 

been performed.  

The distributions of the main displacements and the maximum stresses 

arising have been illustrated in Fig. 18. The proposed formulation with NURBS 

coincides with the FEM model of 6600 triangular solid elements and one rigid 

diaphragm created with FEMAP [54] (errors around 0% for displacements and 

stress resultants). The discrepancies between the proposed formulation and the 

solid model without any diaphragms are quite small (less than 5%) and only for 

the angle of twist the difference becomes larger (8.6 %). This implies that the 

distortion is not of much importance for this cross section and structural 

arrangement. Regarding the maximum normal and maximum shear stresses, it 

seems that the after the placement of 4 diaphragms not much difference takes 

place and even for less than 4 diaphragms the “errors” arising are around  5%. 

Thus, guidelines might lead to cost ineffective solutions for this particular 

curved bridge deck.  
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Figure 18. Discrepancies from solid model without diaphragms for a cantilever beam with the 

cross section shown in Fig. 17.  

 

In addition to these, the clamped model of the same beam is considered in Fig. 

19. Similarly to the previous case of the cantilever beam, the proposed 

formulation agrees to the solid model with one diaphragm. The discrepancies 

between the models become larger for displacements as the number of 

diaphragms increases comparing to the previous case of the cantilever beam. 

However, stresses, which are of more importance in this case due to the fact that 

the magnitude of displacements is quite low, are almost unaffected by the 

placement of diaphragms. Thus, it seems that boundary conditions need to be 

considered in the specification of diaphragms.   
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Figure 19. Discrepancies from solid model without diaphragms for a clamped beam with the 

cross section shown in Fig. 17. 

 

After specifying the maximum spacing of diaphragms and employing only one, 

the dynamic problem of the clamped curved beam is examined. In Table 6 the 

eigenfrequencies are compiled for three different cases, namely proposed 

formulation, solid model with one diaphragm (FEMAP) and solid model 

without diaphragm (ANSYS-SOLID45) [57]. It is important to note that 

damping is considered in the last case. However, the eigenfrequencies of the 

proposed curved beam formulation are in general quite close to solid model 

without diaphragm and in fact are closer than the solid with one diaphragm, 

especially after the fifth mode.  
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Table 6.  Eigenfrequencies of the clamped beam shown in Fig. 17 

Mode 

Number 

FEMsolid  

1 Diaph. 

Solid45  

no 

Diaph. 

cubic  

NURBS 

Description of the 

predominant modes 

1 9.72 (1.73)* 
9.67 

(1.22)* 
9.55 

First mode of vertical 

displacement 

2 19.21 (0.65) 
19.47 

(0.70) 
19.33 

First mode of lateral bending 

3 21.58 (4.62) 
21.66 

(4.97) 
20.58 

First mode of torsion  

4 22.75 (1.11) 
22.98 

(2.10) 
22.49 

Second mode of vertical 

displacement 

5 
33.59 

(13.74) 

36.57 

(4.48) 
38.21 

 

6 37.10 (7.93) 
38.67 

(3.55) 
40.04 

 

7 44.16 (3.50) 
43.74 

(2.57) 
42.61 

 

8 
47.68 

(11.84) 

51.39 

(3.78) 
53.33 

 

*() difference between the corresponding solid model and the proposed beam model (cubic 

NURBS) 

 

Finally in Fig. 20 the dynamic response is obtained for the cases previously 

mentioned plus the solid model without diaphragm created with FEMAP [54] 

for comparison reasons. The models are subjected to a vertical cosine load  

100cos(2 )yP t kN  applied at midspan. It is worth noting that damping is 

obvious through the oscillations present at the solid model with damping 

(ANSYS-SOLID45) at the initial phase of its transient response. The rest of the 

models exhibit in general a steady state response. However, this does not affect 

significantly the results comparing to the other model without diaphragm 

(FEMAP). The placement of diaphragm causes the reduction of the vertical 

displacement throughout the application of the dynamic load. The proposed 

formulation seems to be closer to this model and exhibits a quite smooth 

behavior following the application of the load due to the absence of damping.  
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Figure 20.  Box-shaped cross section of the beam of example 4.3. 

 

5.   CONCLUDING REMARKS 
In this paper, the dynamic generalized warping analysis of curved beams is 

mainly examined. In addition to this, Isogeometric tools integrated in FEM and 

AEM are applied for the analysis of curved homogeneous bridge decks 

considering nonuniform warping effects. The presented formulation is based on 

advanced beam elements taking into account secondary torsional shear 

deformation effect and shear lag effect due to both shear and torsion. The 

importance of the proposed bridge beam formulation is highlighted when 

considering the advantages of beam models compared with solid ones, as it is 

mentioned in the introduction. Thus, the main purpose is for the beam 

formulation to remain simple and with the least number of degrees of freedom 

needed to describe its behavior accurately (distortional effects and local 
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buckling phenomena increase significantly the dimension of the problem). 

NURBS structures give another important advantage over solid models, 

especially with curved geometries, due to the fact that they do not require 

cumbersome pre- and post-processing while integrate curved geometry in the 

analysis employing the same shape functions. In addition to this, creation of 

coarse models with quadrilateral solid elements and diaphragms is very time-

consuming. NURBS have been employed in combination with FEM or AEM 

beam elements and compared to FEM models employing quadrilateral or 

triangular solid elements and quadratic AEM beam elements. Results have also 

been obtained when employing diaphragms in the solid models according to 

guidelines of [55] and [56]. The main conclusions that can be drawn from this 

investigation are: 

a. Highly accurate results can in general be obtained using b-splines in the AEM 

technique as well as NURBS in FEM beam formulations for the static and 

dynamic analysis of the proposed beam element. Computational effort, 

including post-processing of the results, is significantly reduced by the use of 

NURBS comparing to FEM beam and solid models. Employment of NURBS 

either in FEM or in AEM results in higher convergence rates and highly 

accurate results with few elements. In addition to this, NURBS give more 

accurate values for higher frequencies comparing to traditional FEM beam 

elements 

b. The magnitude of Bimoment is in general not negligible comparing to the 

total Torsional Moment and both moments can also be of the same order of 

magnitude as in the example 4.2. In addition to this, secondary Torsional 

Moments can be significant and should also be considered in the analysis. 

These higher-order additional stress resultants can now be integrated in the 

analysis’ results and plotted in alignment with the curved geometry due to the 

use of Isogeometric analysis.  

c. Regarding very thin-walled structures (example 4.1), guidelines for spacing 

of diaphragms to prevent distortional effects seem to lead to more unsafe 

solutions formulations when curved beams are considered due to the high 

level of warping and mainly the distortional one. In such cases the magnitude 

of the curvature is of importance. However, in stiffer structures with higher 

thickness to width ratios (examples 4.2 and 4.3), it seems that the guidelines 

applied in this study might give uneconomic solutions in order to moderate 

distortional effects. Thus, the specification of the maximum spacing of 

intermediate diaphragms should be encountered as a multi-parameter 

problem considering cross sectional geometry together with the plan view 

dimensions.  

d. Amplification factors of the dynamic response of a curved beam either for 

suddenly or gradually applied force are similar to those of straight beam 



178                            HOBT and isogeometric methods in the analysis of curved bridges 

 

formulations. The use of diaphragms seems to moderate the dynamic load 

impact on the structure while the consideration of damping does not alters the 

response in a significant way.  
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APPENDIX 
Table A.1. Geometric constants of the beam in Figure 5 
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    
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Table A.2. Geometric constants of the beam in Figure 13 
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Table A.3. Geometric constants of the beam in Figure 17 
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