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ABSTRACT: Cables are efficient structural elements that are used in cable-

stayed bridges, suspension bridges and other cable structures. These cables are 

subjected to environmental excitations such as rain- wind induced vibrations. 

Rain-wind induced stay-cable vibrations may occur at different cable 

eigenfrequencies. Several methods, including aerodynamic or structural means, 

have been investigated in order to control the vibrations of bridge’s stay-cables.  

Aerodynamic methods, such as modification of the cable roughness were 

effective only for certain types of vibration. Another method is the coupling of 

the stays with secondary wires, in order to reduce their effective length and 

thereby to avoid resonance. Finally, external transverse dampers have to be 

designed for several target cable modes in order to decrease the oscillations 

amplitude and to damping them. This paper investigates a movable anchorage 

system with a Classical Rolling Pendulum Bearing (CRPB) device. An 

analytical model of cable-damper system is developed herein based on the taut 

string representation of the cable. The gathered integral-differential equations 

are solved through the use of the Lagrange transformation. Finally, a case study 

with realistic geometrical parameters is also presented to establish the validity 

of the proposed system. 

 

KEYWORDS: bridge dynamics; stay-cables; damping systems; bearings; 

vibration control 
 

1 INTRODUCTION 
Cable-stayed (C-S) bridges have been known since the beginning of the 18

th
 

century, but they have been of great interest only in the last sixty years, 

particularly due to their special shape and also because they are an alternative 

solution to suspension bridges for long spans. The main reasons for this delay 

were the difficulties in their static and dynamic analysis, the various 

nonlinearities, and the absence of computational capabilities, the lack of high 

strength materials and the lack of construction techniques. There are numerous 
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studies dealing with the static behavior, the dynamic analysis, and the stability 

of C-S bridges. The static behavior of C-S bridges is described in the works of 

Fleming [1], Kollbruner et al [2], Bruno and Grimaldi ([3], Gimsing [4], Khalil 

[5], Virgoreux [6], Michaltsos et al [7] and Freire et al [8], while dynamical 

analyses of C-S bridges can be found in the works of Fleming and Egeseli [9], 

Nazmy and Abdel-Ghaffar [10], Abdel-Ghaffar and Khalifa [11], Bruno and 

Colotti [12], Chatterjee et al [13], Michaltsos [14], Konstantakopoulos et al 

[15], Wang et al [16], Cao et al [17], Macdonald [18], and Raftoyiannis and 

Michaltsos [19]. Stability aspects of C-S bridges are presented in the book by 

Raftoyiannis and Michaltsos [20] as well as in the works of Ermopoulos et al 

[21], Bosdogianni and Olivari [22], Michaltsos [23], Michaltsos et al [24] and 

Pedro and Reis [25]. 

A significant problem, which arose from the practice, is the cables rain-wind 

induced vibrations. Large amplitude Rain-Wind-Induced-Vibrations (RWIV) of 

stay-cables constitutes a challenging problem in the design of C-S bridges. Such 

phenomena were first observed on the Meikonishi bridge in Nagoya-Japan by 

Hikami and Shiraishi [26] and also later on other similar bridges, as for instance 

the steel Erasmus bridge in Rotterdam-Netherlands by Achkire and Preumont 

[27] and the Second Severn Crossing, connecting England and Wales by 

Macdonald et al. [28]. It was found that the cables, which were stable under 

wind action only, were oscillating under a combined influence of rain and wind, 

leading to large amplitude motions, even for light-to-moderate simultaneous 

rain and wind action. The frequency of the observed vibrations was much lower 

than the critical one of the vortex-induced vibrations, while it was also 

perceived that the cable oscillations took place in the vertical plane mostly in 

single mode; for increasing cable length however, higher modes (up to the 4th) 

appeared. Most importantly, during the oscillations a water rivulet appeared on 

the lower surface of the cable, which was characterized by a leeward shift and 

vibrated in circumferential directions as described in the works of Wilde and 

Witkowski [29], Ibrahim [30], and Sophianopoulos [31]. The so-produced 

vibrations may result in a reduced life of the cable and its connection due to 

fatigue or rapid progress of the corrosion. 

Several methods, including aerodynamic or structural techniques, have been 

investigated in order to control the vibrations of bridge’s stay cables. 

Aerodynamic methods, such as modification of the cables’ roughness were 

effective only for certain types of vibration. Another method is the coupling of 

the stays with secondary wires, in order to reduce their effective length and 

thereby to avoid resonance. This method affects the bridge’s aesthetics. Finally, 

external transverse dampers have to be designed for several target cable modes 

in order to decrease the oscillations amplitude and to damping them. 

In C-S bridges, the stays are generally fixed in anchorages on the deck 

through an anchor head as shown in Fig.1. 
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Figure 1.  Anchorage of stays 

 

This paper investigates the effectiveness of a movable anchorage system with a 

Classical Rolling Pendulum Bearing (CRPB) device. An analytical model of the 

cable-damper system is developed herein based on the taut string representation 

of the cable. The gathered integral-differential equations are solved through the 

use of the Lagrange transformation. Finally, a case study with realistic 

geometrical parameters is also presented to establish the validity of the 

proposed system, while the required device for the studied case is designed. It 

must be reminded that this solution, with various forms (see Fig. 2) was 

described, patented, and finally used by Jules Touaillon [32]. 

  

     
 

(a)                                             (b)                                                               (c) 
 

Figure 2.  Various forms of a CRPB with: (a) one, (b) two, and (c) three concaves 

 

2 BASIC ASSUMPTIONS 
a) The deformed shape of the cables under dead and live loads is a catenary 

curve, with displacements wo and tensile forces To (see Fig.3), which 

because of its very shallow form can be approximated by a second-order 

parabola.  

b) Under the action of the dynamic loads py(x,t) and pz(x,t), the cable takes the 

form of Fig. 4, with additional displacements ud,  υd,  wd  and tensile forces  

Td. 

c) The static and dynamic tensile forces are related as follows: 









)t(HH)t(H

       (t)TT(t)T

do

do
                  (1) 

where H, is the projection of force T on x-axis. 
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  Figure 3.  Cable and reference axes 

 

d) The masses )s(mand)x(m shown in Fig. 3, are related through the 

expression                               
dx

ds
)s(m)x(m          (2) 

e) The studied cables are referred to the inclined axis system 0-xyz of Figs. 3 

and 4.  

 

 
 

Figure 4.  Deformation of the cable 
 

3 EQUILIBRIUM EQUATIONS OF A TAUT CABLE 
In this section, the equations governing the behavior of a taut cable, the one end 

of which is movable (see Fig. 4), are derived. 

 

3.1 Projection on xoz-plane 
For a shallow form of the cable, the following relations are valid: 
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













0dsin

ds/dwsin

1ds/dxcos

z

z

z

          (3) 

 

3.1.1 Equilibrium of horizontal forces 
Projecting on xoz-plane and taking the equilibrium of horizontal forces, we 

obtain: 

0dsumdsucdsp
ds

dx
T

ds

dx
T

ds

dx
T x 








  ,         or finally: 

    )t,x(pumuc
s

H
x




         (4) 

 

3.1.2 Equilibrium of vertical forces 
Projecting on xoz-plane and taking the equilibrium of vertical forces, we obtain: 

 0dswmdswcdspgdsm
s

w
T

s

w
T

s

w
T z 






















             (5a) 

 

 

                  
Figure 5.  Projection on xoz-plane 

 

Taking into account the equation of static equilibrium, i.e., 

0
t

)x(w
andwww:validalsoarethatand,gm)

s

w
T(

s

o
do

o
o 














 
equation (5a) becomes: 

)t,x(pwmwc
x

w

x

w
T

x

w
T zdd2

d
2

2

o
2

d2

d
2

o 
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
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












             (5b) 
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Figure 6.  Projection on xoy-plane 

 

3.2 Projection on xoy-plane 
Projecting on xoy-plane, taking the equilibrium of vertical forces, and through a 

similar process like the one of §3.1, we obtain: 

)t,x(pmc
x
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d
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d
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3.3 The cables’ deformation 
The following relations are valid: 










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From the second of eq (7), neglecting the higher order terms we get: 

dx

dw
dw
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ds
dsdx o

o , and taking into account that do dwΔdw  , we 

obtain: 
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On the other hand, we know that:    E    or 
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using the condition 0dx

L

0

 , the above gives:  

0dx
dx

dw

dx

dw

cos

dx

EA

T
L

0

od

L

0 z
3

d 


         (9b) 

From this last, after integration by members and with boundary condition 

0)0(w d   we obtain: 
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







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               (10) 

 

3.4 Catenary and the parabola approach 
It is necessary to determine the form of a cable in rest, i.e. wo. In this case, we 

have: 0)t,x(p)t,x(p yz  ,  0u  , )x(ww o .  

Therefore, equation (4) gives:  0
s

Ho 



, which results  

ttanconsHo                                 (11) 

On the other hand, equation (5a) gives:   gm
s

w
T

s

o
o 
















 or 

 gm
dx

dw
H

sdx

dw

ds

dx
T

s

o
o

o
o 



























, or finally: 

dx

ds
gmgm

dx

wd
H

2

o
2

o                                  (12) 

It is usual to use the parabola as a curve that is very close to the catenary one, 

especially for shallow forms of cables. For a cable’s shallow form (i.e. dxds  ), 

the equation of a parabola passing from the points (0,0), (L,0) and having 

o
o

H

gm
w   (from eq. 12), is given by the following formula: 

)xL(x
H2

gm
)x(w

o
o                            (13)  

A comparison between the parabolic form of a cable (as the used in C-S 

Bridges) and the catenary one shows that the differences of the two curves’ sags 

amount up to 0.02%. 
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4 ANALYSIS 

4.1 The cable 
In C-S-bridges, stay cables are generally fixed in anchorages on the deck 

through a socket or an anchor-head as shown in Fig. 1. 

The stay-cable model with the considered anchorage-bearing system is shown 

in Fig. 7. 
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Figure 7.  The stay-cable model 

 

For small deflections, according to §3, the motion of the cable is described by 

the following equation: 
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
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L

0 z
3o

cosEA

dx
L:with and boundary conditions: 
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


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

0)L(wk)L(wT

0)0(w

dsdo

d          (15a,b) 

where FH is the acting force due to the bearing device and δ the Dirac delta 

function. 

 

4.2 The rolling pendulum bearing system 
Let us consider a C.R.P.B. device with one concave rolling, like the one of 

Fig.8. The C.R.P.B. system is made from material like the one of the classical 

ball-bearings (see also paragraph 6), having surfaces elaborated wery diligently, 

with coefficient of rolling friction ranging from 0.002 to 0.005. Therefore, the 

developed friction forces can be neglected in this preliminary study. On the 

other hand, the angle of the friction cone amounts up to 0.34
o
, which 

corresponds to a very small static friction. 
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Figure 8.  Geometry of a C.R.P.B. system 

 

For very small values of the angle φ, it is: 
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4.3 The rolling pendulum bearing system 
Introducing eq(14b) into eq(14a) and taking into account eqs (17) and (18), we 

obtain the following equation of motion:  
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4.4 The free vibrating cable 
The equation of motion of a free vibrating cable with movable anchorage is: 


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wmwcwT            (20) 

We are searching for a solution of separated variables of the form: 

)t()x(W)t,x(w d                          (21) 

Introducing eq(21) into eq(20) we get: 
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The above integral-differential equation (22) has the solution: 
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Setting x=L, the above eq(23), becomes: 
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Because of eq(24), eq(23) becomes: 
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
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Equation (25), which is of Hammerstein type, gives after integration: 
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Therefore, equation (25) becomes: 
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Introducing equation (26) into the boundary conditions of eq(19) we obtain: 
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In order for the above system to have a non-trivial solution, the determinant of 

the coefficients of the unknowns must be zero. This condition concludes to the 

following eigenfrequencies’ equation: 

0LsinTD
R

T
)D1(LcosT)D1(

R

T
D

R

T
)D1(DD o1

o
2o2

o
1

o
212 


























                                                                                                                         

                                                                                                                 (28) 

Finally from equations (27), (28) and the first of (26), one can determine the 

following form of the shape functions: 
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























 )Dx(cos

)DL(cos
R

T
LsinT

)DL(sin
R

T
LcosT

)Dx(sinc)x(W 2n

2n
o

non

2n
o

non

1n1n
      

(29) 

 

4.5 The forced vibrating cable 
The forced vibration of a stay-cable, is described by equation (19) of §4.3:  

)Lx(w
R

T
)t,x(pwmwcdxw

L

w
w

L

)L(w)L(w
wT d

o
dd

L

0

d

o

2
o

o

o

do
do 





     

We are searching for a solution of the form: 


n

nnd )t(Z)x(W)t,x(w                 (30) 

where Wn(x) is taken from eq(29) and Zn(t) unknown time functions under 

determination. Introducing eq(30) into the first of (19), we get: 










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
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







)Lx(ZW
R

T
)t(f)x(p

ZWmZWcdxZW
L

w
Z)L(W

L

w)L(w
ZWT

n
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n
o

z

n

nn

n

nn

L

o n

nn

o

2

o

n

nn

o

oo

n

nno


                                                                                                          (31) 

Since Wn satisfies the first of eq(22), the above becomes: 





  )Lx(ZW
mR

T

m

)t(f)x(p
ZWZW

m

c
ZW

n

nn
oz

n

nn

n

nn

n

nn
2
n

  

                                                                                                                      (32) 

Multiplying by Wk, and integrating the outcome from 0 to L, we finally obtain: 



























nto1k:for

dxWm

Z)L(W)L(W

R

T

dxWm

dxW)x(p)t(f

ZZ
m

c
Z

L

0

2

k

n
nnk

o

L

0

2

k

L

0
kz

k

2

kkk


     (33) 

In order to solve the above differential system, we use the Lagrange 

transformation. Therefore, we set: 









)s(F)t(Lf

)s()t(LZ kk
                  (34a,b) 
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and with initial conditions: 

0)0(Z)0(Z kk                       (35a,b) 

we conclude to the following system: 


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
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,

dxWm

)L(W

R

T
s

m

c
s

,

dxWm

)L(W)L(W

R

T
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L

0

2

k

L

0
kz

k

L

0

2

k

2

ko2

k

2

kk

L

0

2

k

ko

k

knkn22k11k


                                             
(36) 

From the solution of the above system, we obtain ζk , and finally:
 

)s(L)t(Z k
1

k              (37) 

 

5 NUMERICAL RESULTS AND DISCUSSION 

5.1 The Cables 
Let us consider a C-S bridge with dense distribution of cables from which we 

study a cable having tension To=300000 dN/cable, cross-sectional area 

F=7.5∙10
-3

m
2
, diameter D=0.13 m, weight G=70 dN/m, mass per unit length 

m=7kg/m, and variable length L=150, 250, and 350m. 

 

5.2 The rain-wind combination 
It has been observed that the rain-wind-induced vibration in bridge cables 

usually occurs in a frequency range from 0.5 to 4 sec
-1

. For the study of the 

vibration of a cable under the action of a rain-wind combination we choose the 

following loading: tsin20)t(f)x(pp  , where  ω= 1, 2, 3, 4 sec
-1

 (for 

the study of the above cables without a damping system) and ω= 3 sec
-1

 (for the 

study of the above cables with the proposed C.R.P.B. devise). 

 

5.3 Behavior of the cables without a damping system 
Using equation (9.9) with To/R= ∞, we determine the eigenfrequencies of the 
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above considered cables, as they are shown in the following Table 1. 

 

                                 Table 1. Eignefrequencies of the cables 

                                           m=7kg/m ,       To=300000 dN 

 L=150m L=250m L=350m 

ω 1 4.4697 2.8186 2.1507 

ω 2  8.6716 5.2029 3.7164 

ω 3  13.0125 7.8130 5.5868 

ω 4  17.3432 10.4059 7.4328 

ω 5  21.6801 13.0093 9.2936 

 

In Figs 9 to 11, one can see the oscillations of the mid-length of the studied 

cables with length   L=150, L=250 and L=350m, subjected to loadings acting 

with frequencies ω=1, 2, 3, 4 sec
-1

. 
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                                                       In this case, big deformations appear, because   

                                                       the eigenfrequency of the external load  near   

                                                       to the first one of the cable ( ω1 =4.47 sec-1) 

 

Figure 9. Oscillations of the mid-length of a cable of length L=150m, without any damping 

system 
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In this case, big deformations appear,  

because the eigenfrequency of the external  

load is near tothe first one  of the cable (ω1 =2.82 sec
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).     
          
Figure 10. Oscillations of the mid-length of a cable of length L=250m, without any damping 

system. 
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                                                  In this case, big deformations appear, because   

                                                   the eigenfrequency of the external load is near  
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Figure 11.  Oscillations of the mid-length of a cable of length L=350m, without any damping 

system 
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5.4 The damping system 
In the followings, we will use a C.R.P.B. device, based on the operation 

principle of the simple system of Fig. 8 and which will be designed in detail in 

the next paragraph 6. 

We will consider devices with concave radii R=1, 2, and 3 meters.  

The corresponding eigenfrequencies of a cable supplied by such a device are 

given in the following Table 2 (using eq. 9). 

 

        Table  2.  Eigenfrequencies of cables with respect to concave radius R 

L 150 250 350 

R 3 2 1 ∞ 3 2 1 ∞ 3 2 1 ∞ 

ω1 4.365 4.393 4.420 4.470 2.739 2.749 2.758 2.817 2.046 2.051 2.057 2.151 

ω2 8.518 8.573 8.628 8.672 5.166 5.185 5.190 5.203 3.698 3.701 3.712 3.716 

ω3 12.762 12.845 12.930 13.012 7.726 7.756 7.787 7.813 5.546 5.562 5.578 5.587 

ω4 17.014 17.121 17.232 17.343 10.290 10.330 10.370 10.406 7.379 7.399 7.420 7.433 

ω5 21.268 21.400 21.539 21.680 12.859 12.909 12.960 13.009 9.218 9.244 9.271 9.294 

In the plots of Figs 12, 13, 14, we see the oscillations of the middle and of the 

anchor head of a cable of length 150m, tension 300000dN, and for different 

values of R. 
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Figure 12.  Oscillations of the mid-length and of its anchor head of a cable of L=150m, R=3m 

___ with C.R.P.B.    - - -   without C.R.P.B 
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Figure 13.  Oscillations of the mid-length and of its anchor head of a cable of L=150m, R=2m 

___ with C.R.P.B.    - - -   without C.R.P.B 
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Figure 14. Oscillations of the mid-length and of its anchor head of a cable of L=150m, R=1m 

___ with C.R.P.B.    - - -   without C.R.P.B 

 

From the above plots of Figs 12 to 14, we ascertain that smaller radii are more 

effective than the greater ones. The above results are valid for both the cables’ 

deformations and the anchorages’ motion. 

In the plots of Figs 15, 16, and 17, we see the oscillations of the mid-length and 

of the anchor head of a cable of length 250m, tension 300000dN, and for 

different values of R. 
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Figure 15.  Oscillations of the mid-length and of its anchor head of a cable of L=250m, R=3m 

___ with C.R.P.B.    - - -   without C.R.P.B 
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Figure 16.  Oscillations of the mid-length and of its anchor head of a cable of L=250m, R=2m 

___ with C.R.P.B.    - - -   without C.R.P.B 
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Figure 17. Oscillations of the mid-length and of its anchor head of a cable of L=250m, R=1m 

___ with C.R.P.B.    - - -   without C.R.P.B 

 

From the above plots of Figs 15 to 17, we observe that although the oscillations’ 

amplitude is remarkable large (because the frequency of the external loading 

approaches the first eigenfrequency of the cable) the effectiveness of the system 

is obvious. We ascertain, again, that smaller radii are more effective than the 

greater ones. The above results are valid for both the cables’ deformations and 

the anchorages’ motion. In the plots of Figs 18, 19, and 20, we see the 

oscillations of the mid-length and of the anchor head of a cable with length 

350m, tension 300000dN, and for different values of R. 
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Figure 18.  Oscillations of the mid-length and of its anchor head of a cable of L=350m, R=3m 

___ with C.R.P.B.    - - -   without C.R.P.B 
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Figure 19.  Oscillations of the mid-length and of its anchor head of a cable of L=350m, R=2m 

___ with C.R.P.B.    - - -   without C.R.P.B 
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Figure 20.  Oscillations of the mid-length and of its anchor head of a cable of L=350m, R=1m 

___ with C.R.P.B.    - - -   without C.R.P.B 

 

From the above plots of Figs 18 to 20, we ascertain, once again, that smaller 

radii are more effective than the greater ones. The above results are valid for 

both the cables’ deformations and the anchorages’ motion. 

 

6 DESIGN OF A C.R.P.B. DEVICE 

6.1 Bearing capability 
Manufactures of ball bearings typically publish “LOAD RATINGS” for each 

bearing that they produce. The methods used to calculate loads, is possible to 

vary from manufacturer to manufacturer. 

However both ABMA and ISO have published standards related to load ratings. 

ABMA std. 9  -  Load Ratings and Fatigue life for Ball Bearings 

ABMA std. 12.1 and 12.2  -  Instrument Ball Bearings 

ISO  76  -  Static Load Ratings 

ISO  281-  Dynamic Load Ratings and Rating Life. 

With regard to load ratings, one must remember that static load ratings and 

dynamic load ratings are calculated on completely different ways and there is 

not direct relationship to one another.  

The Basic Static Load Rating applies to bearings where motion does not 

occur or occurs only infrequently. The basic load ratings and calculation 

methods are based on methods described by the above-mentioned ISO 

recommendations. 

As a standard of permissible static load, the basic load rating is specified as 

follows:  

a) Maximum contact pressure at the contact point 4200 MPa (1 

MPa=100 N/cm
2
) 

b) Total permanent deformation of the compressed zone can be, 

approximately, 1/10000
th

 of the rolling elementary diameter. 

c) The basic load rating for stainless steel is 80% of that for standard 

bearing steel. 
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According to the above recommendations, one can proceed as follows (see 

Figure 21): 

4
2 102r

10000

r2
f       and  r9998.0frf 21    

From the above, we find:   ttancons9998.0
r

f
cos 1    or finally: 

ttancons)146.1(~rad020.0 o   

 

From the sketch of Figure 21, we get: 

r
2

r2 



  

Therefore, for the safe undertaking of a load To, the required length d of the 

cylinder of Fig. 21, can be determined by the following relations: 

per

o

per

o

2

T25.1
d:steelstainlessforor,

2

T
d







                   

  

6.2 Selection of the appropriate C.R.P.B. 
According to the results of §5.4, we select a device with R=1m, and D=2r=7cm. 

From §6.1, we have cm07.05.3020.0r   and  

cm51
4200007.02

300000

2

T
d

per

o 





    or, equivalently, 4 cylinders with 

length 15cm. 

The designed C.R.P.B. device shown in Fig. 22 can undertake loads acting to 

any direction because the rolling cylinders operate along two perpendicular 

axes. 
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Figure 22.   The required C.R.P.B. 

 

7 CONCLUSIONS 
In this paper, a movable anchorage system with Classical Rolling Pendulum 

Bearing (C.R.P.B.) for vibration control of stay cables has been proposed and 

investigated. A model for the control system has been formulated, based on the 

taut string representation in which the proposed device has been incorporated. 

From the studied cases, one can conclude to the followings: 

• The constant of the equivalent spring of the CRPB system has been assessed. 

• The results of cable response show that the proposed CRPB device can 

effectively reduce the oscillation magnitude of the cable, proving the 

efficiency of the system. 

• The observed decrease of the cable’s oscillations amounts from 15% to 50%, 

while the motion of the anchor-head of the selected and designed device 

amounts from 1.5 to 6 cm. One must note that the CRPB device is very 

effective even for external loads acting with frequencies equal or near to one 
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of the eigenfrequencies of the strained cable. 

• The design parameters of the CRPB system for the selected cables are 

identified and the proper device has been designed.  

• The proposed anchorage system is shown to perform more efficiently than 

the conventional passive external dampers, presenting a better solution from 

aesthetics point of view.   
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