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ABSTRACT: This paper deals with the influence of a moving mass-load on 

the eigenfrequencies of a single span bridge as well as its dynamic deformations 

taking into account the above altered eigenfrequencies that are constantly 

changing due to the mass-load movement. A simple but efficient 2-DOF model 

is considered in order to study the dynamic behavior of the bridge, while the 

theoretical formulation is based on the modal superposition approach and the 

continuum approach, which has been widely used in the bibliography to analyze 

such problems. The resulting non-linear differential system of equations of 

motion is solved with the aid of a commercial symbolic manipulator and useful 

results are gathered and presented in graphical and tabular form 
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1 INTRODUCTION 
A lot of research has been reported during the last 100 years dealing with the 

dynamic response of railway bridges and later of highway bridges, under the 

influence of moving loads. Extensive references to the literature on this subject 

can be found in the excellent book of Frýba [1]. 

Two early contributions in this area by Stokes [2] and Zimmerman [3] set 

the background for dealing with the problem of moving loads. Krýlov [4] 

presented a complete solution to the problem of the dynamic behavior of a 

prismatic bar under a constant magnitude load moving with constant velocity. 

Timoshenko [5] solved the same problem, but for a harmonic pulsating moving 

load. Another pioneer work on this subject was presented by Inglis [6], in which 

numerous parameters were taken into account. Hillerborg [7] gave an analytical 

solution to the previous problem by means of Fourier’s method. 

Despite the availability of powerful computers, most of the methods used 

today for analyzing bridge vibration problems are essentially based on the early 

techniques of Inglis or Hillerborg. Relevant publications in this area of study are 

the ones by Saller [8], Jeffcot [9], Steuding[10], Honda et al [11], Gillespi [12], 
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Green & Cebon [13], Green et al [15], Zibdeh & Reckwitz [16], Lee [17], 

Michaltsos et al [18], Xu et al [19] , Foda & Abduljabbar [20] and Michaltsos 

[21, 22]. 

Despite of the large number of studies for over 50 years, bridges as well as 

other structures subjected to dynamic loads have been designed to account for 

dynamic loads by increasing the design live loads by a semi-empirical “impact 

factor” or “dynamic load allowance”. 

Recently, there have been many programs of research, discussing the effect 

of the characteristics of a bridge or a vehicle on the dynamic response of a 

bridge such as: the programs in U.S.A., U.K. and Canada [23], in the 

Organization for Economic Cooperation and Development (O.E.C.D.) in 

Switzerland [24] etc. Among the important studies on this field, one must 

especially refer to the important experimental research by Cantieri [25], dealing 

with different models of moving loads.  

From the three factors (vehicle speed, matching of bridge-vehicle natural 

frequencies and irregularities and roughness of bridge deck-surface) which 

affect the vibration of a bridge, only the third one has been extensively studied 

in the last years, mainly by experimental methods. 

It is well known and mentioned in many classical dynamics books such as 

Rogers [26], Timoshenko et al [27], that a concentrated mass attached to beam 

affects sometimes strongly its dynamic characteristics. On the other hand, there 

are many publications (mainly using a F.E.M. analysis), dealing more with the 

influence of the mass forces (mass inertia, centripetal, Coriolis forces etc) on 

the dynamic behavior of a bridge such as Szyszkowski & Sharbati [28] and 

Sharbati & Szyszkowski [29] and only a few dealing with these problems 

through a pure theoretical investigation such as Michaltsos et al [18], 

Michaltsos & Kounadis [30], and Reis & Pala [31].  

A lot of semi-analytical approaches were recently applied for solving 

dynamic problems in engineering as for example Werme [32], Mamandi & 

Kargarnovin [33], Ju [34], Wang et al [35], Ghasemzadeh et al [36], while some 

researchers obtained interesting results using the decomposition method in 

engineering problems by Adomian [37, 38] which is an extension of the Ito 

integral, such as Hashim et al [39], Yahya et al [40], Duan & Rach [41], and 

Emad et al [42]. All the above mentioned publications ignore the alteration of 

the dynamic characteristics of the bridge during the vehicle passage.  

This paper deals with the influence of a moving mass-load on the 

eigenfrequencies and the dynamic deformations of a beam, taking into account 

the aforementioned alteration of the eigenfrequencies due to the mass-load 

movement. A 2 DOF model is considered to study the dynamic behavior of the 

beam based on modal superposition and the continuum approaches. The 

gathered non-linear system of equations of motion is solved with the aid of a 

commercial symbolic manipulator. Characteristic examples are presented and 

useful conclusions are gathered. 
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2 ANALYTICAL FORMULATION 

2.1 The mass M on the beam 
Let us consider the beam of Figure 1 with mass per unit length m and a 

concentrated mass M at point A which is always in contact with the beam 

during its vibration. Thus, the rotational moment of inertia JM does not affect the 

beam’s vibrations. 
 

 
Figure 1.  Beam with a mass M attached to point A 

 

The equation of the free motion of the beam-mass system is given by: 

                            
0w)]x(Mm[wIE           (1) 

One can search for a solution in the form of separate variables: 

                                       )t(T)x(W)t,x(w            (2) 

Introducing Εq(2) into Εq(1), one gets: 
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and therefore, the equation giving the shape function W(x) of the beam is: 
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In order to apply the Galerkin’s approach, we set: 

                        )x(Xc)x(Xc)x(Xc)x(W nn2211                 (4) 

where ci are unknown coefficients to be determined and Xi are arbitrarily 

chosen functions of x, which satisfy the boundary conditions. As such functions 

one can choose the shape functions of the corresponding beam without the 

concentrated mass M. 

Introducing Εq(4) into Εq(3), one obtains: 
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Taking into account that Xρ(x) satisfy the equation of free motion: 
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where ωρ the eigenfrequencies of the corresponding beam without the mass M, 

Εq(5a) becomes: 
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Multiplying the above by Xk(x) and integrating the outcome from 0 to L, one 

obtains: 
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For a single span beam, one has: 
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Introducing Εq(6b) into Εq(6a) the following system is obtained: 
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(6c) 

From the above system of Εqs(6c) one can determine: 
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A simple numerical application with m=5 gives the following Table 1. 

 

Table 1.  Relations between constants for the first 5 eigenfrequencies and 

various beam lengths 

L 15m 25m 50m 100m 
c2 /c1 (-0.02 to 0.02) c1 (-0.012 to 0.0015) c1 (-0.0075  to 

0.0075) c1 

(-0.0045  to 

0.0045) c1 

c3 /c1 (-0.006 to 0.004) 

c1 

(-0.0035 to 0.0025) c1 (-0.0025  to 

0.0017) c1 

(-0.0013  to 

0.0007) c1 

c4 /c1 (-2*10-4 to 10-4) 

c1 

~0 ~0 ~0 

 

The above Table 1 verifies that the first is the predominant mode, while the rest 

modes have an influence less than 2% (for spans up to 15m) and 7 to 4
0
/00 (for 

bigger spans). 

Therefore, Eq(4) can be rewritten with satisfactory accuracy as follows: 
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where c1(α) is a coefficient the form of which must be determined. 

The following equation is valid: 
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where for the loading shown in Figure 1, one can write: 
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From Eqs(7b) and (7c), one can determine the expression of  c1(α) as follows: 
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where c1 is an arbitrary constant that can set equal to  1. 

 

2.2 The moving mass M on the beam 
For a mass-load M, moving on the beam of Figure 2, the equation of motion is: 

)x()wg(MwmwIE            (8a) 

Obviously, Eq(8a) is not complete since it does not contain all mass inertia 

forces. The complete equation has been presented by Michaltsos & Kounadis 

[30], where the influence of the Centrifugal and Coriolis forces has been 

studied, in relation to the ratio M/mL and the velocity υ of the moving mass. It 

has been shown that including these forces in the analysis has similar effect on 

the dynamic response of the beam as the moving mass-load consideration. 

The influence of the above mentioned terms varies from 1.5 to 5% for beams 

with normal characteristics, and from 5 to 20% for beams with characteristics 

not used in the practice. 

There are also the terms of the Mass’ rotational moment of inertia and of the 

wheelbase of a real vehicle that affect the motion of a beam and which have 

been presented by Michaltsos [43]. 

The complete form of the equation of motion containing in addition to the 

above terms and several others such as the tangential velocity component due to 

the deformation of the beam, is given in paper and the book by Michaltsos & 

Raftoyiannis [44, 45].  Therefore, the completeness of an equation is something 

relevant, depending each time on the purpose it serves.  

However, this paper does not aim to study the accuracy or correctness of this 

equation, but the efficiency of the solution. Undoubtedly, similar results can be 

gathered from the study of the corresponding complete equation. We are 

searching for a solution in the form: 
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where )t( are the unknown time functions (under determination) and 

),x(W  are given by Eq(4) with )(cc   , as they have been obtained from 

the solution of Eqs(6c). 
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Figure 2.  Beam with a mass M moving with velocity υ 

 

From Eq(8b) one obtains: 
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in which the distance  α is a relation of t. 

Because of Eqs(8b) and (8c) , Eq(8a) can be written as follows: 
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Given that Eq(3) is valid, the above Eq(8d) becomes: 
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Multiplying successively the above equation by n21 X,,X,X  , integrating the 

outcome from 0 to L, taking into account Eq(4) and because of the 

orthogonality condition of the shape function )x(X , one concludes to the 

following differential system:  
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where: 
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The above differential system of  )t(,),t(),t( n21   , can be solved only 

numerically. 

 

2.3 The eigenfrequencies 

It is obvious that the term )t(2
k

 is a very complicated function. This fact makes 

the solution of the above non-linear differential system particularly difficult and 

sometimes impossible. A simple and efficient way for the solution of such a 

system is to simulate the term )t(2
k

  with an expression having a form easy to 

manage. Plotting the functions of )(k   determined by Eq(6c), one obtains 

diagrams like the ones of Figure 3. 
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Figure 3.  The form of the three first eigenfrequencies due of a moving mass M 

 

As it can be ascertained from the studied examples, the following function 

expresses the real form of k  with satisfactory accuracy: 
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3 NUMERICAL RESULTS AND DISCUSSION 
The main goal of this paper is to study the influence of a moving mass on the 

eigenfrequencies of a beam and therefore to investigate the accuracy of the up 
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to now established and applied analyses in the design. 

Let us consider a single-span bridge with length L=50m, moment of inertia 

I=0.30m
4
 and mass per unit length m=1000 kg/m. The bridge is made from 

homogeneous and isotropic material with modulus of elasticity 
210 m/dN101.2E  .    

The bridge is subjected to a vehicle of mass mM  (with μ = 1, 5, 10, 

20), moving with constant velocity υ (υ = 10, 20, 30, 40 m/sec). Without 

restriction of the generality, the aforementioned vehicle can be considered as a 

concentrated load-mass. Applying the expressions derived in §2 one obtains the 

following plots shown in Figures 4, 5 and 6. Note that the last value (μ=20) is 

not realistic and it is added for purely theoretical purpose. 

 

a) The plots of Figure 4 show the variation of the first eigenfrequency due to a 

moving mass M with μ= 1, 5, 10 and 20.  
 

 

Figure 4. Variation of the first eigenfrequency )IE/(m 2
11   in relation to the position of a 

moving mass, for   μ=1 ( __ ), μ=5 ( …. ) , μ=10 ( - - - ) and  μ=20 ( _ _ )  

                  

Figure 5. Variation of the second eigenfrequency )IE/(m 2
22   in relation to the position of 

a moving mass, for   μ=1 ( __ ), μ=5 ( …. ) , μ=10 ( - - - ) and  μ=20 ( _ _ )  
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One ascertains that λ1 decreases (when the mass approaches the middle of 

the bridge span) almost ~4% for μ=1, ~15% for μ=5, ~28% for μ=10 and 

~40% for μ=20.     

 

b) The plots of Figure 5 show the variation of the second eigenfrequency due to 

a moving mass M with μ= 1, 5, 10 and 20. One ascertains that λ2 decreases 

almost ~4% for μ=1, ~16% for μ=5, ~25% for μ=10 and ~38% for μ=20.    

                    

Figure 6. Variation of the third eigenfrequency )IE/(m 2
33   in relation to the position of a 

moving mass, for   μ=1 ( __ ), μ=5 ( …. ) , μ=10 ( - - - ) and  μ=20 ( _ _ )  

 

c) The plots of Figure 6 show the variation of the third eigenfrequency due to a 

moving mass M with μ= 1, 5, 10 and 20. In this case, λ3 decreases almost  

~3% for μ=1, ~14% for μ=5, ~23% for μ=10 and ~35% for μ=20.    

 

3.1 Eigenfrequencies simulation 
Applying the procedure presented in §2, one can determine the factors A1k and 

A2k, shown in the following Table 2, in order to simulate the eigenfrequencies 

according to Eqs(10). 

 

Table 2.  Factors A1k and A2k for various values of μ 

 A 11 A 21 A 12 A 22 A 13 A 23 

μ=1 0.00001558 0.00001498 0.0002474 0.0002399 0.001262 0.001215 

μ=5 0.00001558 0.0000131 0.0002474 0.0002110 0.001262 0.001080 

μ=10 0.00001558 0.0000112 0.0002474 0.0001865 0.001262 0.000957 

 

In the following Figure 7, one can see the simulation of the first three 

eigenfrequencies of the bridge for μ=5. 
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Figure 7.  Simulation of the first three eigenfrequencies 

 

3.2 The motion of the bridge 
Solving the differential system of Eqs(9a) with the aid of a commercial 

symbolic manipulator, i.e., Mathematica package [46], one obtains the 

following plots of Figures 8, 9 and 10. 
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(c)    υ=30 m/sec  (108 km/h)                                (d)     υ=40 m/sec  (144 km/h) 

 

Figure  8.  The oscillations of the mid-point of the bridge for μ=1 and various values of  υ 

(….) Load F=Mg,   (- - -) Influence of the inertia of a mass M,   ( __ ) Interaction Beam-mass M 

 

In the above plots, only the moving masses with μ = 1, 5 and 10 are presented, 

since masses with μ>10 are considered as non-realistic cases. Each plot contains 

three cases: 

- The motion of the middle of the bridge span due to a moving load F=Mg, 

ignoring the influence of the mass inertia. 

- The motion of the middle of the bridge span due to a moving load-mass M, 
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where the inertia of the mass M is included, and finally 

- The motion of the middle of the bridge span due to a moving load-mass M 

taking into account the interaction between the beam and the mass M. 

Figure 8 shows the motion of the mid-point of the bridge for μ = 1 and various 

velocities. In this case, the differences are negligible and the deformations 

amount, for case (b), up to ~1% more than the ones of case (a), and also ~1% 

for case (c) more than the ones of case b. 
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                   (a)    υ=10 m/sec  (36 km/h)                                 (b)       υ=20 m/sec  (72 km/h) 
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                     (c)    υ=30 m/sec  (108 km/h)                             (d)     υ=40 m/sec  (144 km/h) 

 
Figure 9.  The oscillations of the mid-point of the bridge for μ=5, and various values of υ (….) 

Load F=Mg,   (- - -) Influence of the inertia of a mass M,   ( __ ) Interaction Beam-mass M 

 

Figure 9 shows the motion of the mid-point of the bridge for  μ = 5 and various 

velocities. In this case and for low velocities, the differences of the 

deformations amount, for case (b), up to ~5% more than the ones of case (a), 

and furthermore ~7% for case (c), more than the ones of case (b), while for 

higher speeds the corresponding differences are ~6% and ~9% .     
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(a)    υ=10 m/sec  (36 km/h)                                (b)         υ=20 m/sec  (72 km/h) 
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(c)    υ=30 m/sec  (108 km/h)                                (d)     υ=40 m/sec  (144 km/h) 

                              
Figure 10.  The oscillations of the mid-point of the bridge for μ=10 and various values of υ (….) 

Load F=Mg,  (- - -) Influence of the inertia of a mass M,   ( __ ) Interaction Beam-mass M 

 

Figure 10, shows the motion of the mid-point of the bridge for  μ = 10 and 

various velocities. 

In this case and low speeds the differences of the deformations amount, for 

case (b), up to ~10% more than the ones of the case (a) and also ~12% for case 

(c), more than the ones of case (b), while for higher speeds the corresponding 

differences are ~10% and ~18% .      

 

4 CONCLUSIONS   
Based on the analytical models and the numerical examples presented herein, 

one can draw the following conclusions: 

• The non-linear differential equation governing the vertical motion of a 

bridge under the action of a moving mass-load is formulated and solved 

through the use of the simulation procedure, and the aid of a commercial 

symbolic manipulator, while it was investigated through relative examples. 

• The motion of a mass-load M affects strongly the eigenfrequencies of the 

bridge, especially when the mass M moves near the mid-point of the span. 

The eigenfrequencies decrease from ~4% for masses with μ = 1, and up to 

~25% for masses with μ =10, while for the non-realistic case of a mass with 

μ =20 the decrease is in the order of ~35 to ~40%, depending on the velocity 
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of the vehicle.  

• Regarding the influence of the inertia of the mass (without interaction 

between beam and mass), the eigenfrequencies decrease from ~1%  for μ =1 

up to ~10%  for μ =10. The influence of the mass on the motion of the beam 

(due to the beam-mass interaction that occurs through the eigenfrequencies’ 

alteration) is negligible for μ =1 (~0.5 to 1.5%) while it becomes 

considerable for μ =5 (~7 to 9%) and significant for μ =10 (~12 to 18%), in 

comparison to the ones found if only the inertia of the mass is taken into 

account. 

• The above theoretical findings show that for cases usually met in practice, 

the results from an analysis considering only the load F=Mg (i.e. without the 

mass inertia forces) must be increased from a minimum 2.5% to a maximum 

20%, depending on the ratio μ = M/m.  

• This investigation is limited to bridges with maximum span-length 80 to 100 

meters. The length of the bridge is an important factor involved in the 

computations through the ratio M/mL, but it is not studied herein. 
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