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ABSTRACT: The phenomenon of twisting appears in bending beams as a 

special case of the lateral-torsional buckling of a beam. In this paper, we will 

study the influence of the prestressing on the stability (twisting stability) of a 

simply supported beam. The case of the prestressing by rectilinear tendons is 

studied and numerical applications are presented. 
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1 INTRODUCTION 
The origin of the prestressed steel members dates back many years ago. This 

technique is attributed to Paxton, who in 1851 used prestressed steel beams for 

the building of  Crystal Palace. In 1907, Koenen was the first which proposed 

prestressed steel bars, many years before the application of prestressing in 

concrete [1]. 

 

 

 

 

 

 

 

 

 
 

Figure 1.  Prestressing System of a Steel Beam 

 
The father of prestressing, mainly in  concrete, is Eugène Freyssinet, who in 

1928 defined prestressing as a technique which consists in increasing the 

capacity of a material to undertake greater loads than the ones of a material 

without prestress. 

Comparing the steel prestressed members to the concrete prestressed ones, we 

have to indicate the following: 
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a) The concrete prestressed members are friables and are underlain to the 

shrinking phenomenon. The above, are unknown to a steel member. 

b) This technique further raises both the quality and the resistance to tension 

and compression characteristics of the steel. In opposite, the resistance to 

tension in reinforced concrete is, in fact, negligible or nonexistent. 

 

The prestressing of members is easily applicable both on new and existing 

structures and especially for the strengthening of existing bridges [2]. 

As it is generally known, while an installation of prestressing tendons doubles 

the load-carrying capacity of a structure, it actually increases also the load 

carrying capacity if buckling of the structure is considered [3,4]. 

The research on this last field of instability, is rather poor, and the existing 

publications examine this problem mainly through experimental way [5,6]. 

The instability of a beam, may be appeared not only as the classical buckling of 

a column, but also as the twisting phenomenon (a special case of the lateral-

torsional buckling). 

This phenomenon, appears in bending beams with or without joins (or 

obligations) along the beam-span. 

As an example of the first case we would mention the simply supported beam, 

while as an example of the second case we would mention the main-beams of a 

bridge with deck of under-passage. Let us see the system of figure 1, which is a 

back pushing system. We consider in addition tha the rods or cables “a” and “b” 

are not loaded. By applying an axial force P, we will have evidently a critical 

load bigger than the critical buckling one. A prestressing cable operates like the 

above system in its limit case (with e = 0). Supposing that the ends of the beam 

are unmoved a cable reacts and acts like a back – pushing system just when an 

eccentricity “e” appears at the beginning of the twisting phenomenon of the 

beam. 

In this paper we will study the increasing of the stability (twisting-stability) of a 

simply supported beam prestressed by rectilinear tendons, that is the usual way 

of prestressing in steel beams. Without restriction of the generality, the exposed 

method can be also applied in other forms of tendons like the one of Figure 1b 

(that is rectilinear by parts). 

 

 

2 INTRODUCTORY CONCEPTS 
1. The beams in use, have usually the moment of inertia Iy much bigger than the 

Iz one. In the case of a beam like the one of figure 1a, where Iz<<Iy , appears 

the phenomenon of twisting (a special case of lateral-torsional buckling). 
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Figure 2.  Prestressed Steel Beam Cable Arrangements 

        

2. Let us consider now the beam of Fig. 2, which is prestressed by cables of 

random form, given by the equation: 

)(xzez zo                                                      (1) 

    Where we suppose, in addition, that the points P of anchorage of the cables at 

the edges of the beam are located at a distance ez from the gravity center S of 

the beam’s cross-section.(see Fig. 4). 

3. We assume that w  and thus the terms due to w can be neglected. 

4. Finally the beam may be restrained against torsion, as a member, for 

example, of a bridge, by a spring of constant k (see Fig.2).     

5. The external loads produce the moment My(x), which after the deformation of 

the beam is analyzed to (see Fig. 3): 
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Figure 3.  Analysis after the deformation of the Moment  produced by the external loads 

 

3 ANALYSIS 
We will proceed using the method of the developed potential energy. The 

produced work is due to the external forces and to the internal ones. 

 

3.1. The work of the internal forces. 
Taking into account the cross-section’s warping, the work of the internal forces 

is: 
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3.2. The work of the external forces. 
3.2.1. The work of the force F. 

Because of F (the force of prestressing), the developed tension at a random 
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The displacement B  of the point b, because of the rotation φ, is related to the 

displacement υ of the gravity center by the following relation: 

BB z                                                      (a) 

On the other hand it is valid:  

  BMB zzz                                              (b) 

where z  is shown in Fig. 4.  

From the above (a) and (b) we get finally: 
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From the first of the above we get: 
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Equation (4), because of the above gives: 
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Figure 4.  Position of random point B in relation to the Center of Gravity S 

 

 
3.2.2. The work of zM . 

If ψ is the angle between the axis x and the bended axis of the beam, will be 

 and thus dxd or xdMEd z~M and finally, because of Eqn. 2: 
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3.3. The produced work by the cables. 
In Fig. 5, it is shown the deformed state of a cable of random form. We point 

out, that in the deformed position of the beam, the cable in addition to the 

pressure qz acts also the pressure qy, which reacts to the beam’s displacement. 

Keeping in mind that wc is very small compared to υc (where wc, υc are the 

displacements of the cable), we have that υc is connected to the displacement of 

S by the relation:                       

oc z                                                      (7) 

Projecting the cable on the plane (oxz) we have: 
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Figure 5.  The deformed state of a cable of random form 

 

 
Similarly, projecting the cable on the plane (oyz) we have (see Fig.5): 

cxy Fq                                              (8c) 

 

 
3.3.1. Work produced by the forces qy, qz. 

 
The produced work by qy and qz, taking into account that ccw and equs (8), 

will be:   

 

0 0

1 )( dxFdxwqqE ccxczcyF , or because of equation (7) 

we get: 

 

F 

x  

dx  

A  
B  

z0+dz0 

B΄΄ 
x,u υc+dυc 

F+dF 

A΄΄ 

z,w 

υc 

y,υ 

z0 

A΄ 

B΄ 

S 

 

F 

x  

d

x  A  
B  

z0+dz

0 

B΄΄ 
x,u υc+dυ

c 

Fx+dF

x 

Fy+dF

y Fz+dF

z 

F+dF 

q

z 

q

y 

A΄΄ 

z,w 

υ

c 

y,υ 

z

0 
A

΄ B

΄ 

Fx+dF

x 
Fz+dF

z 

q

z 

F

z 

x 

x 

z  

z  

q

y 

Fx+dF

x 
Fy+dF

y 

z0΄ 

υc΄ 

F

x 

F

x 

F

y 



58               The influence of prestressing on the stability of the main beams of a bridge 
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3.3.2. Work produced by the cable it-self. 

From figure 5 we have:  

 Coordinates of A’’:    (x, c ,  zo ) 

 Coordinates of  B’’:    (x+dx, cc d , zo+dzo ) 

Therefore the length BA  will be: 
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and the total length of the cable will be: 
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On the other hand, we know that the total elongation of a cable of length s and 

of area of cross-section Ac is: 
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Therefore the produced work will be: 
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Or because of equ. (7), the above equ (g) becomes:  
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3.4. The work of the spring. 

We accept that  M=kφ, and therefore:  dxkdxMEd s
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To determine the constant k, we consider that we have n beams along the main 

ones, which connect them, having moment of inertia Io. 

We consider in addition that the above beams of length o  are connected to the 

main-beams through semi-rigid connections of coefficient r. 

Thus will be:  kM
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1 , and therefore: 

 

 
Figure 6. Form of the Semi-rigid connection 
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Finally, the coefficient r, for a connection like the one in figure 6b will be: 
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Where d is the diameter of the screw kernel. 

  

 

3.5.  The total work. 
According to the previous analysis the total produced work is: 
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The following condition must be fulfilled: 
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Which concludes to the following equation: 
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After partial integration and some manipulation of Eqn. (14), we get integrated 

terms and integrals. The first are the boundary conditions while the last give the 

following differential equations of the problem: 
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Practically, it is usually:  1oC . 
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4 NUMERICAL RESULTS 
It is obvious, that Eqn. 14 constitute a non linear system which cannot be solved 

through elementary methods. 

We will try to solve the above system through an approaching method for an 

usual case of a free beam (k=0), with cross-section of double symmetry, 

prestressed by a rectilinear cable and loaded by a pair of moments My=constant, 

acting at its ends (see Fig.7).  

 

 
Figure 7. Steel beam loaded by a pair of moments My=constant, acting at its ends 

 
For this purpose we will use a beam of different lengths having a cross-section 

shown in Fig. 8. 

Easily, one can find that the above beam has the following data: 

2644 0496.0,0002048.0,00032.0,02082.0 mAmImImI bzy

461038.9 mId  

 

For the prestressed cables we have:  

226 001.0,/1012 mAandezmkN czoc  

Beam and cables have the same modulus of elasticity:  28 /101.2 mkNE . 

 
Figure 8. Cross-Section of the beam  
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Given that 0,0,tan,0 kVtconsezz yzoM , and that the cable is 

rectilinear, equations (14) get the following form: 
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We consider solutions of the form: 
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Introducing (16) into (15), we get: 

 

0)2(

)()(

0)()(

22

2
2

222

2

4

222224

VMe
EA

F
F

V
EA

F
FeFiIGIE

Me
EA

F
FV

EA

F
FVIE

yz

c

c

zMd

yz

cc

z







  (17) 

Taking into account that: 
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are the critical loads of pure buckling and of lateral-torsional buckling 

respectively, Eqns (17) conclude to the following ones: 
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Where: 
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In order for the system of Eqn. 19a to have not only trivial solutions, the 

determinant of the coefficients of the unknown must be equal to zero. This 

condition gives the moment My as follows: 
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Figure 9. ..…Beam without F,  - - - Beam with load f but without prestressing 

_____ Beam with prestressing force F 

 
In the above relations taking F=0 we get the critical load when My acts alone, 

while taking zo =0, we get  the critical My for simultaneously action of load F 

(with out prestress): 
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Applying the above data, for beams with length 10 and 20 m k=10, and 

different ez, we get the plots of Fig. 9. 
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5 CONCLUSIONS  
From these plots we point out the following: 

 Prestressing increases the ability of a beam against the twisting 

phenomenon.  

 This increase depends on the eccentricity of the rectilinear tendon, but, in 

any way, it is particularly significant, while sometimes surpasses even the 

ability of the beam in pure buckling due to a pair of My acting alone. 

 

 

REFERENCES 
[1]  Nunziata Vinc., “Strutture in acciaio precompresso”, 1999, Palermo, Editore Dario Floccavio. 

[2]  Troitsky M.S.  “Prestressed steel bridges”, 1990, Van Nostrad Co, N. York.  

[3] Saadatmanesh H. “Experimental study: Prestressed composite beams”, J. Str. Eng. ASCE, 

1989, 115(9), 2348-2363. 

[4] Ayyub B.M, Sohn Y.G, Saadatmanesh H., “Prestressed composite girders under positive 

moments”, J. Str. Eng. ASCE, 1990, 116(11), 2931-2951.  

[5]  Hambly E.C, “Bridge deck behaviour’ 2nd ed. E&Fnspon, 1986. 

[6]  Sunkyn Park, Kim T., Kim K., Hang S-H., “Flexural  behaviour of steel I-beam prestressed 

with externally unbonded tendons” J. of Constr. Steel Research, 2010, 66, 125-132 

  

 

Received: Dec. 12, 2013     Accepted: Dec. 29, 2013 

Copyright © Int. J. of Bridge Engineering 

 
 


