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ABSTRACT: The aim of the paper is to provide numerical evaluations of the 

static and dynamic behavior of long span cable stayed bridges. In particular, 

investigations are presented to evaluate, in the framework of a dynamic 

analysis, the behavior of cable stayed bridges when subjected to the action of 

moving loads. In addition, the nonlinear static behavior is analyzed with the 

purpose to evaluate the influence of the geometrically nonlinear effects on the 

instability phenomena affecting the bridge structure. In both cases, the basic 

formulation is developed by using a finite element approach, in which a refined 

schematization is adopted to analyze the interaction behavior between cable 

system, girder and pylons. The proposed model takes into account geometrical 

nonlinearities of girder, pylons and of the cable system, for which local 

vibrations of the stays are also considered. Sensitivity analyses are proposed in 

terms of dynamic impact factors, emphasizing the effects produced by the 

external mass of the moving system and the influence of both “A” and “H” 

shaped tower typologies on the dynamic bridge behavior. Parametric results, 

developed in the framework of nonlinear static analysis, are also presented to 

evaluate the effects produced by instability effect of the axial compression in 

the girder on the maximum load-carrying capacity of the bridge. 

 

KEYWORDS: Cable-stayed bridges, geometrical nonlinearities, instability, 
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1 INTRODUCTION 
Cable supported bridges have become an efficient solution for long span 

crossing, due to the notable progress in structural engineering, material and 

construction technologies [1]. As concerns long-span bridges, one of the most 

important problems is related to the deformability under live loads. As a matter 

of fact, long span cable-stayed bridges exhibit a remarkable nonlinear behavior 

under dead and live loads. Nonlinear effects in cable stayed bridges may arise 

from different sources. In particular, the cable system is affected by the 

nonlinear behavior of single elements, since they exhibit a different response in 

loading and in unloading due to the cable sag effect induced by self-weight. 
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Additional nonlinear effects may arise owing to changes in geometrical 

configurations due to large deflection effects (usually large rotations but small 

strains) in both towers and girder due to their slenderness, geometrical 

destabilizing effects of the axial compression induced in the towers and girder 

by the cable system [2, 3]. As a consequence, several studies have been carried 

out in the literature to analyze the nonlinear structural behavior of cable stayed 

bridges [2-9]. Some simplified assumptions have been introduced regarding the 

different sources of nonlinearities in most studies, in order to reduce the 

complexity of the highly non-linear problem. Due to its highly nonlinear 

behavior a standard analysis of the cable-stayed bridge, based on linear 

assumptions and on the tangent value of the equivalent elasticity modulus [6], 

may be not appropriate for long span bridges characterized by slender and 

lighter main girders [5, 1]. As a matter of fact, existing models based on the 

equivalent tangent modulus of elasticity or those assuming that the cable resists 

only tensile axial force with no stiffness against axial compression (tension only 

truss behavior), may lead to a notable underestimation of the maximum load 

carrying capacity of the bridge for specific loading conditions, since the 

softening behavior of the cable under unloading is not accurately represented.  

Additional complexities may arise to investigate the behavior of long span 

bridges subjected to moving loads. In this context, the influence of mass 

distribution of the moving system, local vibration effects of the cable elements 

and the interaction between bridge and moving system kinematic are able to 

produce significant dynamic amplification effects in both displacement and 

stress bridge variables [10-14]. Moreover, due to new developments in the rapid 

transportation systems, the allowable speed range is significantly increased. As 

a consequence, non standard excitation modes determine extreme loading 

conditions, which, strongly, influence dynamic bridge behavior. To this aim, 

different investigations are needed to describe the interaction behavior between 

external moving system and bridge vibrations and, consequently, to accurately 

estimate dynamic impact factors of typical design bridge variables. The 

extension of the moving load problem for cable supported bridges with long 

spans requires a consistent approach to correctly analyze train-girder 

interaction. However, the references dealing with the dynamic response of cable 

supported bridges in the framework of moving loads are relatively few. For 

cable stayed systems, the effects produced by moving vehicles or railway loads 

have been analyzed, in terms of dynamic amplification factors related to both 

displacement or stress variables, with respect to bridges of reduced span only 

[15-17]. In the proposed work, the behavior of long span bridges is analyzed by 

using a generalized formulation based on the finite element method, in which 

both in plane and out-of plane deformation modes have been accounted for. 

Cable-stayed bridges based on both “H” and “A” shaped typologies with a 

double layer of stays have been considered. A parametric study in a 

dimensionless context has been analyzed by means of numerical results, in 
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terms of typical kinematic and stress bridge variables for both in plane and 

eccentric loading conditions. In particular, in the framework of the dynamic 

analysis, results are proposed to investigate the effects of moving system 

description with reference to non-standard forces due to Coriolis and centripetal 

accelerations, which are usually neglected in conventional dynamic analyses. 

Moreover, results developed in the framework of nonlinear static analysis are 

devoted to quantify the effects produced by instability phenomena in the bridge 

components on the on the maximum load-carrying capacity of the bridge. 

 

2 CABLE-STAYED BRIDGE MODEL  
In this section the governing equations for the bridge constituents as well as the 

main assumptions concerning the kinematic modeling are discussed. In 

particular, the main assumptions concerning the kinematic modeling of the 

bridge, the inertial forces to define the moving loads/girder interaction as well 

as those involved by the destabilizing effects produced in both girder and 

pylons are analyzed.  

2.1 Formulation of the bridge model 
The bridge scheme is based on a tridimensional modeling, in which both in 

plane and out of plane deformation modes are considered. The structural model, 

reported in Fig.1, is consistent with a fan-shaped and a self-anchored cable 

stayed bridge scheme. Moreover, the pylons refer to A or H-shaped typologies.  

The cable kinematic is defined starting from the initial configuration 

under dead loads (DL), namely 
0

, whose details concerning the solving 

procedure are reported in Sec.2.2. The cable position vector, , due to the 

application of live loads is described by means of the following additive 

expression: 

0 0 0

1 1 1 2 2 2 3 3 3, , , ,C C CX t X U X t n X U X t n X U X t n
 
(1)

 

where the superscript 
0

 represents, here and in the following, variables 

associated to the initial configuration, X , with 
1 2 3, ,TX X X X , is the 

positional vector of the cable with respect to the reference system and C

iU , with 

i=1,2,3, are the displacement components in the local reference system 
iX  

described by the basis 
in of the coordinate system [18]. Moreover, the 

constitutive laws of the cable are defined by the second Piola-Kirchhoff stress 

1

CS  and Green-Lagrange strain 
1

CE  as follows:  

1 0 1, ,C C C CS X t S C E X t
   

(2)
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with  

1 1 1 1

2 2 2

1 1, 1, 2, 3,

1
, , , , ,

2

C
C C

X X X X
E X t U X t U X t U X t U X t (3)

 

where CC is the elastic modulus, 
0

CS is the stress referred to the initial 

configuration. 
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Figure.1. Cable stayed bridge scheme: bridge kinematic, pylon, girder and cable system 
characteristics. 

 

 Girder and towers are consistent with a beam model based on the Euler-

Bernoulli formulation, in which large displacements are considered by using 

Green-Lagrange strain measure. Moreover, the torsional behavior owing to 

eccentric loading is described by means of the classical De Saint Venant theory. 

The displacements of the cross section for a generic point located at the 

1 2 3, ,X X X coordinate, i.e. 1 2 3, ,
G G G

U U U , are expressed by the following 

relationships: 

1 1 2 3 1 1 2 1 3 3 1 2

2 1 2 1

3 1 2 3 3 1 1 1 2

, , , , , , ,     

, , ,      

, , , , ,

G
G G G

G
G

G
G G

U X X X t U X t X t X X t X

U X t U X t

U X X X t U X t X t X

  (4) 

where
1 2 3, ,G G GU U U

 
and G G G

1 2 3, ,
 
are the displacement and rotation fields 
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of the centroid axis of the girder with respect to the global reference system, 

respectively. The constitutive relationships are defined on the bases of 

moderately large rotations in which only the square of the terms 

1

2

,

G

i X
U representing the rotations of the transverse normal line in the beam are 

considered. Starting from the status concerning the initial configuration in 

which only dead loading are considered, the following relationships between 

generalized strain and stress variables are obtained: 

1 1 1 1

1 1 1

1 1 1

2 2 20( ) 0( )

1 1 1 1 1, 1, 2, 3,

0( ) 0( ) 0( )

2 2 2 2 2 2 2 22, 3,

0( ) 0( ) 0( )

3 3 3 3 3 3 3 33, 2,

1

1
,

2

,

,

G G GG G G G G G G G G

X X X X

G G G G G G G G G G G G G

X X X

G G G G G G G G G G G G G

X X X

G G

N N C A N C A U U U U

M M C I M C I M C I U

M M C I M C I M C I U

M G J
11,
,G G G G G

t t X
G J

 (5) 

where G GC A  and 
1

G are the axial stiffness and strain, 
2

G and 
3

G  or  
2

G GC I  and 

3

G GC I  are the curvatures or the bending stiffnesses with respect to the 2X  and
 

3X  axes, respectively, G and G G

tG J
 
are the torsional curvature and stiffness, 

respectively, 
1

GN is the axial stress resultant, 
2

GM and 
3

GM  are the bending 

moments with respect to the 2X  and
 3X  axes, respectively, 

1

GM and G G

tG J are 

torsional moment and girder stiffness, respectively. 

 

2.2 Initial configuration under dead loads 
In order to analyze the actual behavior of the cable system the initial 

configuration in terms of stresses and strains should be determined. In 

particular, with reference to the cable-stayed bridge scheme, reported in Fig.2, 

with n number of stays, the objective functions are represented by the 

displacement vector U  containing the n-2 vertical displacements, i.e. 

2 3 2,..., ,G G G

n nU U U , excluding those points associated with the anchor stays at 

the cable/girder connections, and the horizontal displacements of the top cross 

section of the pylons ( ,P P

L RU U ): 

1 3 2, , ,..., , ,T P P G G G

L R n nU U U U U U    
(6) 

Moreover, the design variables, which have to be calculated, correspond to the 

internal stress distribution of the cable system, i.e. 
1 2 1, ,..., ,

c

T C C C C

n nS S S S S . Since 

the relationships between displacements and cable stresses are essentially 

nonlinear, a specialized solving procedure to calculate the initial configuration 

is required. In particular, starting from an initial trial distribution in the cable 
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system, i.e. 0S , the vertical displacements under the dead loading can be 

expressed to the first order by the Taylor expansion in terms of the incremental 

cable stress distribution, by means of the following linearized equation: 

 
0

2

0 0

,

, ,

S g

dU
U S S g U S g S o S

dS
  (7) 

where 0 ,U S g  is a vector containing the displacements in the self-weight 

loading condition and subjected to the stress distribution 0S , g  is the loading 

parameter associated to the application of the dead loading and 

0 ,S g

dU

dS
is the 

directional derivative of U  at 0S coinciding with the flexibility matrix of the 

structure. In Eq.(7), the unknown quantity is represented by the incremental 

vector related to the cable stress distribution, namely S , which is determined 

enforcing the displacement vector ,U S S g  to be zero under the action of 

the dead loading. Since the structure is affected by a nonlinear behavior, an 

iterative procedure based on the Newton-Raphson scheme is adopted. 

Moreover, the initial value of the stresses of a generic stay or the anchor stays 

are assumed to be equal to fixed working stress values, namely g  and 0g  

respectively, which are defined on the basis of the ratio between live load p and 

dead load g, the allowable stay stress and the geometric characteristics of the 

bridges, by means of the following relationships [19-21]  

g a

g

g p
  

1

2 1

0

2
1 [1 ( ) ] ,g a

p L

g l
  (8) 

Similarly, the geometric measurement for the cables system can be expressed 

by the following equations [7-10, 31]:  

,
sin

C i
i

g i

g
A   

1
2 22

0

0

[1 ( ) ] [( ) 1]
2 2

C

g

gl l L
A

H l
, (9) 

where i  is the slope of a generic stay element with respect to the 

reference system, (L,l,H) are representative geometric lengths of the bridge 

structure, and  is the stay spacing step 
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Figure.2. Cable stayed configuration under dead loading: definition of the 

internal stresses and kinematic parameters. 

 

2.3 Nonlinear static bridge behaviour  
An accurate determination of cable non-linear response within a nonlinear static 

analysis is compulsory in order to avoid inappropriate predictions of the actual 

load carrying capacity. 

For large stress increments the secant modulus approach must be adopted in 

place of the tangent one, due to the high geometrical nonlinearity related to self-

weight of the stay. Accordingly the stress increment in the stay σ may be 

written in the form:  

 
*
sE ,    (10) 

where 
*

sE  is the secant modulus of the stay a nonlinear function of the axial 

strain ε (see Fig. 3). 
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Figure.3. Stress-strain relationship of the cable. 

 

For a parabolic approximation of the stay deformed configuration, the secant 

modulus has the following expression (see [1] for instance): 

 

*

2 2
00

3 2
0

,   1
1

1  
12 2

s

E
E

l E
,    (11) 

where E is the Young modulus, A the cable cross-sectional area, γ the cable 

weight per unit volume, lo the horizontal projection of the stay length, and σ0 the 

initial stress in the stay.  

From Eq. (11) the tangent modulus expression ([5, 22]) can be obtained  in the 

limit as the stress increments approaches zero from the initial configuration (i.e. 

β 1):  

* *

2 21
0

3
0

lim

1
12

t s

E
E E

l E
.          (12) 

The so-called tension only approximation can be obtained by assuming that 

when shortening occurs the cable stiffness vanishes (see for instance [1, 22]): 

 
*   0

0    0

tE if

if
.                 (13) 
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It must be evidenced that when the cable sag effect is neglected 
*

sE  can be 

replaced by E. 

The different assumptions regarding the nonlinear cable response can be 

analyzed qualitatively with reference to a typical cable-stayed bridge scheme of 

fan shaped type, self-anchored with the girder not constrained in the horizontal 

direction and uniformly loaded on the central span. Assuming a simplified 

linear prebuckling behavior the girder’s compression leads to equilibrium 

bifurcation when the load reaches its critical value. The postbuckling response 

depends on the shape of the buckling mode and may be affected by a decreasing 

behavior owing to the softening cable response in compression (see the dashed 

line curve in Fig. 4). 

On the other hand the actual bridge behavior taking into account the nonlinear 

prebuckling effects, doesn’t exhibit an equilibrium bifurcation as shown in 

continuous line in Fig. 4, and is similar to that of a structure with initial 

imperfections whose initial post-buckling behavior can be determined as a 

function of the idealized perfect structure. Owing to the softening behavior of 

the stress-strain stay relationship under shortening, a snap buckling behavior is 

expected with a local maximum in the static equilibrium path which can be 

significantly below the critical load.  

The above described bridge behavior can be captured when the secant modulus 

model is adopted leading to a strong snap buckling behavior with a load 

maximum max significantly below the critical load c and with a post-buckling 

behavior of asymmetric unstable type. On the other hand, the tangent modulus 

approach leads to a non-conservative prediction since the corresponding limit 

load is larger than the one based on the secant modulus formulation. Moreover a 

mild snap buckling occurs as in a symmetric unstable bifurcation. It is worth 

noting that generally speaking the magnitude of the critical load, depending on 

the tangent modulus distribution along the stays, should changes slightly with 

respect to the secant modulus formulation.  
On the contrary when the tension only truss model is adopted, the maximum 

load may be notably lower than the more accurate prediction obtained using the 

secant modulus model, thus giving a conservative prediction of the maximum 

load-carrying capacity. 
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Figure. 4. Load parameter versus lateral midspan deflection curve. 

 

2.4 Description of the moving load problem 
The external loads are assumed to proceed, with constant speed c from 

left to right along the bridge development and are supposed to be located, 

eccentrically with respect to the geometric axis of the girder. The moving 

system description refers to railway vehicle loads, which are reproduced by 

means equivalent uniformly distributed loads, perfectly connected to the girder 

profile. As a result, the kinematic parameters of the moving system coincide 

with the ones defined by the girder, neglecting frictional forces arising from the 

external loads, roughness effects of the girder profile and local loading 

distribution produced by railway load components. However, these assumptions 

are quite recurrent in the framework of cable supported bridges with long spans, 

in which, typically, such interaction forces produced by localized dynamic 

effects are negligible with respect to the global bridge vibration [19]. Moreover, 

it is assumed that the damping energy is practically negligible. This hypothesis 

is verified in the context of long span bridges, where it has been proved that the 

bridge damping effects tend to decrease as span length increases [21]. With 

reference to the structural scheme reported in Fig.5, the infinitesimal reaction 

forces produced by the moving load on the girder profile can be expressed as a 

function of time dependent positional variable s, with s t ct , by means of 
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the balance of linear momentum, as follows: 

3

1

2

1

1

1

2

3 3

1 2

2

2 2

1 2

2

1 1

1 2

m m

X

s X

m m

X

s X

m m

X

s X

dU d Ud
dR dX g s t s t

dt dt dt

dU d Ud
dR dX s t s t

dt dt dt

dU d Ud
dR dX s t s t

dt dt dt

 (14)

 

where g  is the gravitational acceleration,  is the external mass per unit length 

and 
m

iU with i=1,3 are the displacement functions along Xi axis of the moving 

mass, identified by the girder kinematic by using Eq.(4), as 
m

i iU U . It is 

worth noting that in Eq.(14).1, at right hand side, the first term represents the 

dead loading contribution, whereas, the second term is produced by the 

unsteady mass distribution in the system due to time dependence character of 

the mass function arising from the moving loads. Finally, the third term must be 

calculated taking into account of the relative motion between bridge and the 

moving mass as follows [10]: 
m m m m m

i i i i idU U U U Us
c

dt t s t t s
   (15) 

2 2 2 2

2

2 2 2
2

m m m m m m

i i i i i i
s td U U U U U Ud

c c
dt t t t t sdt t s

 (16)
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Figure.5. Girder kinematic (a) and moving loads description (b). 
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It is worth noting that the eulerian description of the moving system 

introduces in Eq.(16), three terms corresponding to standard, centripetal and 

Coriolis acceleration functions, respectively. However, the last two 

contributions in the acceleration function for the transverse and longitudinal 

displacements, i.e. when i=1,2, are typically negligible in comparison to the 

term associated with the standard acceleration and thus they are not considered 

in the following computations. Making the use of Eqs. (15)-(16), the reaction 

forces per unit length produced by the moving system are described by the 

following expressions: 

3

3

3 31 1

1 1 1

2 2 2 2 2 2

3 3 3 1 1 1

2 2 2 2

1 11 1

2 2

G GG G
X

X

G G G G G G

dR U Ud
p g e c e

dX dt t t X X

U U U
c c e c c

t X t Xt X t X
 (17)

 

2

2

2

2 2

2

1

G G
X

X

dR U Ud
p

dX dt t t
  

   (18) 

1

1

22

3 31 1

2 2

1

32 2

31 2 1

2 2

1 1

G GG G
X

X

GG G G

dR U Ud
p e e

dX dt t t t t

UU U Ud
e e

dt t t X t t X

  (19) 

where e is the eccentricity of the moving loads with respect to the girder 

geometric axis. Moreover, in Eqs. (17)-(19), the mass function during the 

external load advance can be expressed with respect to the global reference 

system assumed from the left end of the bridge as: 

1 1 1, ,ML ps t H s L ct H ct s  (20) 

where H  is the Heaviside step function, pL  is the length of the moving 

loads, 1s  is the referential coordinate located at the left end of the girder cross 

section, i.e. 1 1
2

L
s l X , and ML  is the mass linear density of the moving 

system. 

 

3 FINITE ELEMENT FORMULATION 
The cable system is modeled according to the multi element cable system 

approach, where each cable is discretized using multiple truss element and large 

deformations are accounted by using Green–Lagrange strains. The bridge has 

been modeled by means of a 3D assembly of non-linear beam elements and the 
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connections between cables and girder have been obtained by using constraint 

equations. This discrete model has been studied by means a displacement-type 

finite element (FE) approximation, implemented in the commercial software 

COMSOL MULTIPHYSICS TM [23]. In order to reduce the computational 

effort in the numerical calculations, a three dimensional finite element model 

has been developed by using beam elements for the girder and the pylons and 

nonlinear truss elements for the cable system. Specifically, the bridge deck is 

replaced by a longitudinal spline with equivalent sectional and material 

properties and the pylons are composed by two columns connected at their top 

and at the level of the bridge deck by two horizontal beam elements. 

The destabilizing effects produced in both girder and pylons by the axial 

compression force induced by stays, has been accounted by adding the 

following weak contributions for the girder and pylons, respectively, to the 

virtual work principle formulation: 

1 2 2 1 3 3  
e e

G G

L L
N dL N dL , 

2 2 1 1  
e eL L
N dL N dL  

where N is the axial force, 1 2 3, ,  denote the bending rotation about the 

1 2 3, ,X X X  axes and Le is the element length. The cable system is modeled 

according to the multi element cable system approach, according to which each 

cable is discretized using multiple truss element and the stiffness reduction 

caused by sagging is accounted for by allowing the cable to deform under 

applied loads. Large deformations are accounted by using Green–Lagrange 

strains and the axial strain is calculated by expressing the global strains in 

tangential derivatives and projecting the global strains on the cable edge. 

Additional details about the approach here adopted to model nonlinear cable 

behavior can be found in [23]. The tension only behavior is modeled by 

multiplying the longitudinal modulus of the truss element by a step function 

depending on the axial strain increment with respect to the initial configuration 

of the bridge under dead loading, in order to exclude any stiffness contribution 

of the cable under shortening. The constraint conditions between the girder and 

the stays are modeled with offset rigid links to accommodate cable anchor 

points by means of the extrusion coupling variable technique (see [23] for 

additional details). 

Governing equations introduce a non linear set of equations, which have 

been solved numerically, using a user customized finite element program, i.e. 

COMSOL Multiphysics TM version 4.1 [23]. Finite element expressions are 

written starting from the weak form, introducing the interpolation functions 

,i i  to represent cable (C) and girder/pylon (G,P) variables as: 
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, ,

1 1

, ,   , ,   
n n

C C G P G P

i i i i

i i

U r t r u t U r t r u t   (21) 

where n  represents the number of nodes of the master finite element. In 

particular, Lagrange interpolation functions are adopted to analyze the behavior 

of the cable system, whereas for girder elements based on EB formulation 

Hermit cubic interpolation functions are employed.  

The bucking and post-bucking behaviors have been investigated by using a 

solution strategy based on the damped Newton method has been adopted. An 

algebraic equation that controls the applied live loads λp so that the generalized 

deflection of a control point reaches the prescribed values, is introduced in the 

FE model by means of the ODE interface. Moreover, in order to capture the 

typical snapping behavior of the load-displacement curve, a generalized 

deflection increasing monotonically with the evolution of the loading process is 

chosen. For instance in the case of loading on the central span of the bridge, an 

appropriate choose to capture the snapping behavior is the lateral midspan 

deflection δl or the girder end in-plane rotation θl, although in some cases 

relevant to the tension only (TO model) the central midspan deflection δc has 

been adopted. For the dynamic analyses, in order to solve the nonlinear 

algebraic equations an implicit time integration scheme based on a variable 

step-size backward differentiation formula (BDF) is adopted. Moreover, during 

the time integration, due to the fast speeds of the moving loads, a small time 

step size is utilized, which typically, no more than 1/50 of the fundamental 

period of vibration of the structure. 

 

4 RESULTS AND DISCUSSION 

4.1 Static analysis: influence of nonlinear effects on the bridge 

behaviour 
Numerical results devoted to the non-linear bridge response are presented in the 

following sections to analyze the influence of different loading conditions, 

geometrical configurations and pylon shapes. In the finite element model of the 

bridge both the H-type and A-type pylon shapes are analyzed and different 

eccentricities with respect to the deck axis of the live load are taken into 

account. In addition, two types of loading conditions are considered: a uniform 

load distributed on the whole bridge length and a uniform load applied on the 

central span only. In the numerical tests the following dimensionless parameters 

are adopted: 

62.5, 5 3, 0.1, =1 105, 7200 2.1 10 , 50
2

aL l b K

H H H L E g
. 

The value adopted for the dead load g is equal to 300,000 N/m, typical of a steel 

deck, whereas the cable unit volume weight has been assumed equal to 
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=77.01kN/m
3
. The parameters ε, εA and a are used to define the bridge 

geometrical parameters according to the following formulas: 

3 4 3

2

12
,  ,  

4

g A

g g

a HgH g
H I A

E
. 

Taking into account the previous parameters a parametric analysis is carried out 

for the bridge by adopting the following values for the above quantities: ε = 0.2 

or 0.3, a = 0.10 or 0.20 and p/g = 0.5 or 1, whereas εA has been assumed equal to 

54.5. Moreover, the following additional parameters are used to define the 

bending stiffness Izz and the pylon bending stiffness Ip yy: 

4
3

4 zz g

h

I

b g
, 

 yyp

r

I
I

I
. 

The towers stiffness Ip xx for out-of-plane bending has been assumed equal to Ip 

yy. The axial, bending and torsional stiffnesses of the beams connecting the two 

towers of the pylons have been assumed equal to the corresponding ones 

adopted for the towers. The cross section area and the torsional stiffness of the 

towers have been assumed equal to those of the girder. With reference to the 

above parameters additional analyses will be carried out in terms of Ir and  by 

adopting the following ranges of variation:  = 0 ÷ 0.5, Ir = 0.5 ÷ 70, while the 

following parameters have been assumed for the remaining parameters: τ=0.1, 

εh=5, t=0.1. In this section the influence of the different approaches which can 

be used to model the stays mechanical behavior on the bridge nonlinear 

response is analyzed by means of the general 3D finite element model 

introduced. In particular, the behavior of a single cable has been modeled by 

using the multiple truss element nonlinear formulation, which will be denoted 

as NLM, the tangent modulus linear model (denoted as LM) which adopts the 

initial stress derived from the initial shape analysis and the tension only 

approximation (denoted as TO).  

The classical snapping for high values of the load parameter λ, due to the 

coupling between the softening behavior of cables response in the lateral span 

and the instabilizing effect of the axial compression in the girder, occurring in 

the case of the central loading condition and the H pylon shape, is presented in 

the Fig. 6, for ε=0.2 and 0.3, a=0.2 and p/g=0.5. As λ increases, while in the 

central span the instabilizing effect of the axial compression is balanced by the 

stiffening stays, in the lateral spans a large stress reduction occurs owing to the 

lateral spans deflection. Therefore an instability condition is reached, producing 

a bound in the applied load. The bridge deformed shape for the NLM model 

with ε=0.2, corresponding to the maximum load parameter, is illustrated in Fig. 

7, by using a color map of the displacements. In Fig. 1 the results obtained by 

using the linear tangent model (LM) and the tension only model (TO), are also 

represented. 
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With reference to the actual behavior of the bridge (NLM), the load 

displacement curves, for different girder stiffness parameters, show a notable 

overestimation for the LM approach whereas an underestimation for the TO 

one. The results of parametric analyses for different values of the parameters ε, 

a and p/g are summarized only in terms of the maximum load parameter in 

Table 1, for both H and A pylon shape. These results show the strong stabilizing 

effect of the girder stiffness independently and confirm the considerations made 

on the basis of the load-displacement plotted of Fig. 6 about the overestimation 

of the LM one. The effect of the stay deformability parameter a is weaker than 

that of the girder stiffness one. Results show also how the pylon shape scarcely 

influences the non-linear static behavior of the bridge. Since the A pylon shape 

involves larger lengths in the cable system, the bridge deformability increases 

and this causes a small reduction of the maximum load parameter λmax with 

respect to the H pylon shape. 

 

 

  
Figure 6. Load parameter λ versus central midspan deflection δc for the uniform 

loading condition and H pylon shape: =0.2 (a) and  =0.3 (b).  

 

 
 

Figure 7. Bridge deformed shape for the maximum load parameter for the NLM 

model of Fig. 6a. 
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  a 

ε   

0.10 0.20 

NLM 

(H) 
LM (H) NLM (A) 

LM 

(A) 

NLM 

(H) 
LM (H) 

NLM 

(A) 
LM (A) 

p/g =0.5 
0.2 2.403 3.047 2.393 3.021 2.197 2.617 2.188 2.599 

0.3 7.109 14.156 7.065 14.005 6.910 15.669 6.865 15.464 

p/g = 1 
0.2 1.678 2.248 1.673 2.237 1.563 1.962 1.557 1.950 

0.3 4.476 9.918 4.450 9.813 4.380 11.534 4.353 11.377 

 
Table 1. Influence of ε, a and p/g on λmax for the nonlinear (NLM), linear (LM) 

and tension-only (TO) approaches. Central loading condition. 

 

In the case of the uniform loading the typical snap buckling behavior of the 

bridge is shown in Fig.8. For this loading condition the nonlinear behavior is 

governed by the instability effect of axial compression, while cables provide a 

stiffening effect except for a very small group of cables in the lateral span near 

the maximum load. The influence of the softening cable behavior under 

shortening is less appreciable with respect to the central loading case and the 

maximum load depends strictly on the nonlinear prebuckling effects which lead 

to larger displacements and rotations in the central span when the tangent 

modulus or the tension-only models are adopted. 

The associated bridge deformed shape for the NLM model with ε=0.2 is 

illustrated in Fig. 9, corresponding to the maximum load parameter. The results 

obtained by using the linear tangent model (LM) and the tension only model 

(TO) are shown also in this case in order to appreciate the influence of the 

nonlinear cable response modeling on the global bridge behavior (see Fig. 8). 

Figure 8 shows how the LM and TO models are characterized by the same 

behavior, due to the fact that in the case of the uniform loading condition cables 

are always in tension except for a very small group of stays in the lateral span 

near the maximum load. Moreover, in this case it is possible to appreciate the 

conservative behavior of the LM and TO models with respect to the NLM, in 

terms of the maximum load parameter max. 

Also in this case, the results of parametric analyses carried out for different 

values of the parameters ε, a and p/g, are shown in Table 2 in terms of the 

maximum load parameter and for both H and A pylon shape. It can be 

evidenced that for all the analyzed models increasing the stay deformability 

parameter a leads to a reduction of the limit load, although the effect of this 

parameter appears notably weaker than that of the girder stiffness one. 
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Figure 8. Load parameter λ versus δc (central midspan deflection) for the uniform 

loading condition and H pylon shape: =0.2(a) and  =0.3(b).  

 

 
 

Fig. 9. Bridge deformed shape corresponding to the maximum load parameter for 

the NLM model in Fig. 8a. 

 a 

ε  

0.10 0.20 

NLM 

(H) 

LM 

(H) 

NLM 

(A) 

LM 

(A) 

NLM 

(H) 

LM (H) NLM 

(A) 

LM (A) 

p/g = 0.5 

0.2 7.848 5.305 7.819 5.275 7.731 4.320 7.702 4.291 

0.3 25.315 16.376 25.188 16.274 25.244 15.439 25.115 15.338 

p/g = 1 

0.2 5.589 3.838 5.570 3.817 5.544 3.146 5.525 3.126 

0.3 17.077 11.391 16.994 11.322 17.068 11.332 17.020 11.180 

 
Table 2. Influence of the parameters ε, a and p/g on the maximum load parameter 

λmax for the nonlinear (NLM), linear (LM) and tension-only (TO) approaches. 

Uniform loading condition. 

 
The influence of the tower to girder bending stiffness ratio Ir on the maximum 

load parameter for the H pylon shape and different load eccentricity values ec 
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are then analyzed, for a given live to dead load ratio (p/g = 1), a = 0.1 and = 

0.2. 

The plot of the maximum load parameter max versus the tower to girder 

bending stiffness ratio Ir is presented, for the central loading condition, in Fig. 

10a. Increasing Ir leads to an increment of the maximum load parameter since 

the prebuckling configuration involves smaller deflections and the associated 

prebuckling behavior can be considered as linear. The effects of load 

eccentricity are appreciable only for Ir less than 5, for which increasing load 

eccentricity leads to a transition from an in plane buckling to an out of plane 

buckling coupling pylons and girder.  

In Fig. 10b the influence of the tower to girder stiffness ratio, in the case of 

uniform loading condition on the whole bridge length and for the H pylon 

shape, is represented. In particular, for uniform load applied on the entire bridge 

deck the load maximum level is more than three times respect to central load. 

The effect of load eccentricity is larger respect to the central loading case, 

whereas also in this case pylon buckling occurs for small values of Ir. 

       

 
Figure 10. Effect of pylon bending stiffness and of load eccentricity on the 

maximum load parameter for H pylon shape: central loading condition (a) and 

uniform loading condition (b).  

 

4.2 Dynamic analysis: effect of the moving loads. 
The bridge and moving loads dimensioning has been opportunely 

selected consistently to typical values utilized in several bridge applications and 

mainly derived from both structural and economical reasons. As a result, the 

dimensionless parameters related to aspect ratio, pylon stiffness, allowable 

cable stress, moving loads characteristics are assumed equal to the following 

representative values [1,19-20]:  
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(22) 

where g is the design stress under self-weight loads, is the stays 

specific weight, tC  torsional girder stiffness, b is half girder width, e is the 

eccentricity of the moving loads with respect to the girder geometric axis and  

is the mass density of the girder, 0 0 and are the torsional polar mass moment 

of the girder and moving load, respectively. The initial configuration is obtained 

assuming a proper erection procedure, which produces traction and compression 

states in cable system and girder/pylons, respectively. Comparisons have been 

proposed in terms of moving loads schematization, bridge size parameter, a, 

and girder stiffness properties for typical stress and kinematic design bridge 

variables. The parametric study provides an useful tool to estimate dynamic 

amplification factor dependence from both moving loads and bridge properties. 

The following kinematic and stress variables representative of the bridge 

behavior have been analyzed: 

 
/ 2V L

dynamic impact factor of the midspan vertical displacement, 

 
/ 2M L

dynamic impact factor of the midspan bending moment, 

 
0
dynamic impact factor of the axial force in the anchor stay, 

 dynamic impact factor of the axial force in the longest central span 

stay. 

The dimensionless parameters related to aspect ratio, pylon stiffness, 

allowable cable stress, moving loads characteristics, are assumed consistently 

with well-known design ranges and equal to the following representative 

values: 
6

a pL/2H=2.5, l/H=5/3, /E=7200/2.1x10 , K /g=50, p/g=[1,0.5] , (23) 

In Figs.11a-b, comparisons in terms of dynamic impact factors are proposed, in 

which the influence of external loading with respect to a different external mass 

schematization has been evaluated. As a matter of this fact, the inertial effects 

produced by the moving mass are assumed at first to be completely neglected, 

i.e. =0, or evaluated with respect to both standard acceleration contribution 

only (no Coriolis, Centripetal acceleration terms) and for a steady mass 
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distribution of the global system formed by bridge and moving loads (namely, 

SA). The comparisons denote different predictions for high range of speed 

parameters between SA and proposed results, in which non-standard 

acceleration terms appear to provide notable amplifications in both kinematic 

and stress variables. Moreover, the proposed solution does not agree for low 

range of the speed parameter with the corresponding one in which the inertial 

effects are completely neglected, determining a notable underestimation in 

dynamic impact factors prediction. 
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Figure 11a-b. Cable stayed system: vertical displacement and bending moment D. 

A. F. vs speed parameter  

In Fig.12, at constant vehicle transit speed, the relationship between dynamic 

amplification factors and cable system efficiency is investigated. Therefore, in 

typically allowable ranges of the bridge size parameter a, commonly utilized in 

practical applications, dynamic impact factors related to kinematic (a) and stress 

(b) bridge quantities have been evaluated. The analyses have been developed for 

different lengths of the external transit loads. Furthermore, comparisons in 

terms of the moving mass characteristics have been proposed. The results show 

that inertial effects produce major amplifications in both displacement and 

stress variables, especially, for low values of bridge parameter a, in which the 

bridge structures is more influenced by the dynamic amplification effects. 

Finally, the results are quite dependent from the external mass schematization, 

because notable underestimations in both stress and displacement dynamic 

amplification factors have been noted, if the inertial effects produced by the 

moving loads have not properly accounted for.  
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Figure 12a-b. Cable stayed system: mid span displacement and bending moment 

D. A. F. vs a parameter. 

In Fig.13, sensitivity analyses in terms of the relative flexural stiffness 

parameter f, have been proposed, emphasizing the effects produced by the 

external moving mass. The investigation has been developed for a moving load 

with speed and for different values of cable system efficiency (a=0.1÷0.2). The 

results display decreasing values of the amplification factors for increasing 

values of the f stiffness parameter, whereas dynamic bridge behavior appears to 

be quite sensitive to the external mass schematization. The major amplification 

effects are noted for low ranges of f parameter, in which the bridge structure is 

basically more flexible and mainly dominated by the cable system. Finally, in 

Fig.s 14, the effects of the eccentricity of the moving system for both A-shaped 

tower (AST) or H-shaped tower (HST) is investigated. In particular, 

comparisons to emphasize the prediction of the dynamic amplification factor 

and the maximum value of the torsional rotation, assuming different 

formulations in the prediction of cable suspension system behavior are 

developed (Fig.14a). Finally, in Fig.14-b, time histories of the vertical 

displacements related to different cross-sections of the longest cable of the 

suspension system are reported. The results show how the cable elements are 

subjected during the moving load application to an oscillating behavior in the 

vertical displacements, leading to local vibration effects along longitudinal axis 

of the stay.  
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Figure 13a-b. Cable stayed system: midspan displacement and bending moment 

D. A. F. vs f parameter. 
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Figure  14a-b Midspan torsional rotation dynamic amplification factors  and 

maximum displacement  vs normalize eccentricity of the moving loads (e/b) for AST-

HST (a). Time history of the vertical displacement of the longest stay (b)  

 

CONCLUSIONS 
Results obtained for the static non-linear behavior of the bridge show the strong 

influence of the nonlinear stays response in coupling with the instability effect 

of axial compression in girder and pylons, on the stability behavior of the 
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bridge. As a matter of fact, neglecting the nonlinear stays response leads to a 

notable overestimation of the actual loading carrying capacity of the bridge 

especially when the assumed loading condition produces cable unloading. On 

the other hand, other parameters such as pylon shape and stiffness and live load 

eccentricity may be less important factors in non-linear analysis. Moreover, the 

effects of the inertial description of the moving system on the dynamic bridge 

behavior have been investigated, by means of a parametric study developed in 

terms of both moving loads and bridge characteristics. The analyses have shown 

how the actual behavior of the bridges is quite influenced by mass description 

of the moving loads or the formulation adopted to analyze cable vibrations of 

the suspension system, leading to high dynamic amplification effects on typical 

stress or displacement design bridge variables.  
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