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ABSTRACT: Bridges on floats are usually temporary structural systems 

carrying moving loads while consisting from at least two or more floating piers 

(pontoons). In this work, an analytical model suitable for the dynamic analysis 

of bridges on floats is presented. When a moving load is passing the bridge with 

constant velocity both the beams as well as the piers become in motion. The 

theoretical formulation is based on a continuum approach employing the modal 

superposition technique. Various cases of geometrical and loading parameters 

are studied and the analytical results obtained in this work are tabulated in the 

form of dynamic response diagrams. 
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1 INTRODUCTION 
Pontoon bridges were used since ancient times to cross wide rivers. In our days 

floating structures are still in wide use in both military and civil constructions. 

Many floating bridges have been constructed across rivers and seas in several 

countries instead of conventional bridges based on piers and abutments. One of 

the most well known pontoon bridges in Europe is the double deck steel 

pontoon bridge in Istanbul over the Bosporus spanning, which was constructed 

in the beginning of the 20
th
 century. Other worth mentioning floating bridges 

are the Lacey V. Murrow Bridge, the Hood Canal Bridge in USA, the 

Bergsoysundet Floating Bridge in Norway and the Daxie Island Floating Bridge 

in China. Some of their advantages compared to conventional structures include 

the reduced environmental impact, the ability of relocation and the significant 

low costs in deep water structures. 

Two main different structural forms have been adopted up to now for 

floating bridges: a continuous pontoon type bridge which is made of closely 

connected pontoons and ramps pressed to the shore banks and a discrete 

pontoon type bridge with a beam deck and several discrete pontoons 

functioning as piers. In both cases, the support system for permanent and traffic 

loads of the bridge is due to the buoyancy of water. 

Floating bridges usually are designed by applying the theory of elastic 

foundation neglecting hydrodynamic effects, or more realistically, by 
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considering hydrodynamic effects taking into account hydrodynamic masses 

and dampers [1]. Fleischer & Park [2] used modal analysis to study the hydro-

elastic vibration of a beam under a single-axis vehicle moving with constant 

speed. Seif & Inoue [3] investigated the dynamic behavior of a discrete-pontoon 

floating bridge under the condition of wave effects with the finite element 

method. We must also mention the studies of Chonan [4], Langen [5], Sneyd et 

al [6-8] and Wang et al [9]. The problem of floating bridges under moving loads 

was also studied by Langen [10], Qiu [11], as well as other researchers not 

mentioned herein. 

Model testing can be used for the assessment of the dynamic behavior of 

floating bridges. However it is impractical for parametric studies and it is not 

capable of verifying the structural integrity of all possible loading effects. In 

addition, due to specific load conditions and environmental requirements, the 

floating bridge design will always differ from one site to another. 

The problem can be divided into a hydrodynamic problem for the liquid flow 

and an elastic problem for the pontoons’ oscillations.  

For the hydrodynamic problem one can use the Potential Theory [12], in the 

field of naval architecture and ocean engineering, in order to take into account 

hydrodynamic effects on bridges for different water depths. 

In this study the dynamic response of a bridge on floating piers under a 

moving load is presented. Using Laplace transformations, the analytical 

solutions for the dynamic deflections of the joints between pontoons are 

determined. The water surface is taken to be in calm and its level remains 

invariable. The floating piers are assumed to be non-deformable and are in 

dynamic equilibrium by taking into account, the moving load and the buoyancy 

forces developed. 

Finally we note that the purpose of the present paper is to offer a simplified 

solution for the preliminary design of such a structure. Therefore, the following 

analysis is not so rigorous for hydraulic or naval architecture point of view, 

neglecting terms that have not important influence on the bridge’s behavior, but 

which an hydraulic engineer would include them without fall.  

 

2 THEORETICAL ANALYSIS 
In order to analyze the dynamical behavior of bridges on floats, we consider a 

n-span bridge with n-1 intermediate floating piers as shown in Fig. 1. The first 

and the last span are simply supported at points 0 and n, respectively, which are 

immovable and at points 1 and n-1, which are resting on floats 1 and n-1 that 

are allowed to move only in the vertical direction. Consequently, all 

intermediate spans slide vertically and rotate as well. All parts of the bridge are 

connected to each other with hinged connections. 

In order to analyze the system, we assume the following: 

1. The system equilibrates in a horizontal position at time instant t=0 under its 
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self-weight only. The waves’ influence is neglected. 

2. When a load P with constant magnitude crosses the bridge with constant 

speed , the system is deformed as shown in Fig. 1. 

3. The buoyancy forces at the floating supports are: 

)1n,...,1i(sAV
iii

                                  (1) 

where Ai is the area of the i
th
 pontoon’s cross-section and si is its 

corresponding settlement (sinking). 

4. Each span i of the bridge has mass per unit length mi and bending stiffness 

EIi (i=1,…,n). 

5. The so-called influence functions which express the geometrical 

movement of an undeformed beam for unit settlement of each support (see 

Fig. 2) are the following: 
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Figure 1.  Deformed state of a bridge on floating piers 

 

 
Figure 2.  Influence functions for beam support unit settlements 

 

We assume that a load P with constant magnitude moves on the i
th
 span. For the 
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random span ρ according to Fig. 1 and Eqs(2) we have: 

span ρ:                          
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The forces acting on the random joint ρ and on the joints (i-1),i are: 
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Because of Eqs(3) and Eq(1) and after some manipulation, Eqs(4) become: 
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The equations of motion are: 
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The above because of Eqs(3) become: 

i

i

i
i1i

i

ii
iii,oii,oi

1,o,o

s
x

ms
x

m)x(PwmwEI

s
x

ms
x

mwmwEI













































          (6b) 

The system of Eqs(5) and Eq(6b) gives the unknowns wo,i and si (i=1 to n). We 

are searching a solution in the form of separate variables in the form: 
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where Xik are the shape functions of the i
th
 beam, while Tik are the time 

functions to be determined. Introducing the above expressions (7) into Eqs(6a) 

and Eqs(5) and taking into account that the shape functions of a simply 

supported beam are )/xksin( ii   and satisfy the equations for free motion, we 

obtain: 
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Multiplying Eq(8a) by X1, X2,…, Xn, successfully, integrating the 

outcome from 0 to   (=1,…,n), then Eq(8b) by Xi1, Xi2,…, Xin and 
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integrating the outcome from 0 to i  etc., we conclude to the following system: 
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Where:   
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The above system of equations (9) with unknowns the terms T1, T2,…, Tk 

(k=1 to n) and s1, s2,…, sn-1 and can be solved using the Laplace transformation. 

Thus, we set: 
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From the above Eq(10) we get: 

)0(s)0(sp)p(sp)t(sL

)0(T)0(Tp)p(Tp)t(TL

iii

2

i

kkk

2

k








                            (11) 

where )0(s),0(s),0(T),0(T iikk


  are the initial conditions, which are known. 

Therefore, from Eqs (9), (10) and (11) we conclude to the following system: 

)]0(s)0(sp[
k

m
)1()]0(s)0(sp[

k

m
)]0(T)0(pT[

2

m

sp
k

m
)1(sp

k

m
T)

2

m
p

2

m
(

11
1k

11kk

21k
1

2
k

2
k2




















































 (12a) 



Konstantakopoulos                                                                                                          23 

)]0(s)0(sp[
k

m
)1()]0(s)0(sp[

k

m
)]0(T)0(pT[

2

m

p

P
sp

k

m
)1(sp

k

m
T)

2

m
p

2

m
(

1i1i
ii1k

1i1i
ii

ikik
ii

2
i

2

i
i

2ii1k
1i

2ii
ik

2
ikii2ii








































 (12b) 

)]}0(s)0(sp[
6

m
)]0(s)0(sp[

3

mm
)]0(s)0(sp[

6

m
{

)]0(T)0(Tp[
k

m
)]0(T)0(Tp[

k

m
)1(]sp

6

m

s)Ap
3

mm
(sp

6

m
[Tp

k

m
Tp

k

m
)1(

11

1111

11

k,1k,1
k

11

kk
k

1k

1

211

211

1

2

k,1

2

k

11

k

2

k

1k




















































 










 














(12c) 

1i

2

1i

ii
ii

1i1i
ii1i1i

2i2i
1i1i

k,ik,i
k

ii
k,1ik,1i

1i1i

k

1k

i

2ii

1i1i

2ii1i1i
2i

21i1i
k,i

2

k

ii
k,1i

21i1i

k

1k

p

p
P

)]}0(s)0(sp[
6

m
)]0(s)0(sp[

3

mm
)]0(s)0(sp[

6

m
{

)]0(T)0(Tp[
k

m
)]0(T)0(Tp[

k

m
)1(]sp

6

m

s)Ap
3

mm
(sp

6

m
[Tp

k

m
Tp

k

m
)1(





































 










 


















 (12d) 

i

2

1i1i
1i1i

ii
1i1iii

1i1i
ii

k,1ik,1i
k

1i1i
k,ik,i

ii

k

1k

1i

21i1i

ii

21i1iii
1i

2ii
k,1i

2

k

1i1i
k,i

2ii

k

1k

p
P

)]}0(s)0(sp[
6

m
)]0(s)0(sp[

3

mm
)]0(s)0(sp[

6

m
{

)]0(T)0(Tp[
k

m
)]0(T)0(Tp[

k

m
)1(]sp

6

m

s)Ap
3

mm
(sp

6

m
[Tp

k

m
Tp

k

m
)1(






























 










 

















 (12e) 

The above system of Eqs(12) is a linear system with respect to the unknowns 

kk
s,T


 (=1,…,n). Solution of the above system gives the unknowns in the 

form: 
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where N(p) and M(p) are polynomials with respect to p, with M(p) of equal or 

higher order than N(p). Hence, Heaviside’s rule can be applied, which leads 

finally to the following expression for the unknowns U(t): 
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where i are the r roots (j=1 to r) of the polynomial M(p). 
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3 NUMERICAL RESULTS 
We consider a three-span bridge with lengths L1=L3=10m and L2=15m which 

rests on two pontoons with area A=40m
2
. The beams are made from steel with 

modulus of elasticity E=2.1X10
6
 dN/cm

2
, moment of inertia I=0.00045m

4
 and 

mass per unit length m=100kg. At time t=0sec, a load P=20000 dN enters the 

bridge moving with speed . 

Applying the equations of the preceding paragraphs for different values of 

the speed  (55, 90, 160km/h), we obtain the diagrams in Fig. 3 and Fig. 4, 

which show the oscillations of the middle of the three spans wo1, wo2, wo3, and 

the sinking s1 and s2 of the two pontoons, respectively. 
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(a) 55km/h – 15m/s 

0.2 0.4 0.6 0.8 1 1.2 1.4

t

-0.02

-0.01

0.01

0.02

0.03

0.04

wo1

0.2 0.4 0.6 0.8 1 1.2 1.4

t

-0.1

-0.05

0.05

0.1

0.15

0.2

wo2

0.2 0.4 0.6 0.8 1 1.2 1.4

t

-0.02

0.02

0.04

0.06

wo3

 
b) 90km/h – 25m/s 
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Figure 3.  Mid-span oscillations wo1, wo2, wo3 for various speeds  of the moving load P 

 

4 CONCLUSIONS 
A very simple approach to determine deflections of a bridge on floats based on 

closed form solutions is presented. From the above results, one can draw the 

following conclusions: The influence of the moving load velocity to the 

dynamic response of the bridge is significant, especially for the intermediate 

span. As the load velocity increases, the maximum deflection also increases and 

becomes maximum after the load pass. The oscillation of the intermediate span 

is strongly affected by the ones of the neighboring spans due to the pier sinking. 
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Figure 4.  Pontoon sinking s1 (first raw) and s2 (second raw) for speeds  (55, 90 and 160km/h) of 

the moving load P 

 

REFERENCES 
[1] J. H. Vugts, The hydrodynamic coefficients for swaying, heaving and rolling cylinders in a 

free surface, J Int. Shipbuilding Progress 15 (1968) 251-276. 

[2] D. Fleischer and S.-K. Park, Plane hydroelastic beam vibrations due to uniformly moving 

one axle vehicle, J Sound and Vibration 273 (2004) 585-606. 

[3] M. S. Seif and Y. Inoue, Dynamic analysis of floating bridges, J Marine Structures 11(1) 

(1998) 29-46. 

[4] S. Chonan, Moving load on a pre-stressed plate resting on a half space, Ingenieur Archiv 45 

(1976) 171-178. 

[5] I. Langen, On Stochastic Dynamics of Floating Bridges, Engineering Structures 2(4) (1980) 

209-216. 

[6] J. Davys, R. Hosking and A. Sneyd, Waves due to a steadily moving source on a floating ice 

plate, J Fluid Mechanics 158 (1985) 269-287. 

[7] R. Shulkes, R. Hosking and A. Sneyd, Waves due to a steadily moving source on a floating 

ice plate. Part 2, J Fluid Mechanics 180 (1987) 297-318. 

[8] R. Shulkes and A. Sneyd, Time-depended response of floating ice to a steadily moving load, 

J Fluid Mechanics 186 (1988) 25-46. 

[9] C. Wang, S.-X. Fu and N. Li, Dynamic analysis of a pontoon-separated floating bridge 

subjected to a moving load, J China Ocean Engineering 20(3) (2006) 419-430. 

[10] I. Langen, Probabilistic methods for dynamic analysis of floating bridges, Norwegian 

Maritime Research 1(1) (1983) 2-15. 

[11] L. C. Qiu, Modeling and simulation of transient response of a flexible beam floating in finite 

depth water under moving loads, J Applied Mathematical Modeling 33 (2009) 1620-1632. 

[12] J. Zhang, G. Miao, J. Liu and W. Sun, Analytical models of floating bridges subjected by 

moving loads for different water depths, J Hydrodynamics 20(5) (2008) 537-546. 

 

 

 

 

 



26                                                                          Dynamic behavior of a bridge on floats 

 

 


