
Alexander Blekherman

Medvinsky Corp. (USA)

ABSTRACT: The paper focuses on the excessive lateral sway mo-
tion in footbridges, induced by walking pedestrians, which can be treated
as instability of a structure. For its explanation, a nonlinear problem of the
dynamical behavior of an elastic pendulum is analyzed. It is shown that
simultaneously applied two external vertical and lateral forces (the latter is
based on a forced model whose amplitude is a function of a deck vibration)
can lead to instability of a footbridge in the case of internal resonance, when
the ratio between natural frequencies of vertical and lateral beam modes is
about 2:1, and the natural vertical frequency is close to the vertical walking
frequency. In this case an increasing control (load) parameter (a static dis-
placement caused by pedestrians) passes through its critical value, the fast
growth of the lateral mode is observed, and the vertical mode is saturated.
The relation between the proposed model and a corresponding real struc-
ture is displayed on an example of a suspension footbridge. The nonlinear
differential equations are deduced for describing nonlinear autoparametric
coupling vibration of suspension footbridges. It is shown that the averag-
ing nonlinear differential equations of suspension footbridges and an elastic
pendulum are similar, what allows considering the latter as their model. In
the case of lack coupling between modes, the same mathematical model de-
scribes parametric resonance for the lateral mode. The theoretical results
of the analysis of the model and experimental measurements performed for
the London Millennium Bridge, the Changi Mezzanine Bridge (Singapore)
and the Solferino Bridge (Paris) are compared and discussed. Based on the
above-mentioned test results, it is discussed the reason for arising a single-
frequency lateral response after losing stability of the system in the case of
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external vertical random excitation. It is shown that the model describes
correctly the qualitative features of dynamical behavior of footbridges in
the case of a wideband (or narrowband) random modal excitation.

KEYWORDS: dampers, experimental data, internal resonance, pedes-
trian bridges, vertical (lateral) vibrations.

1 INTRODUCTION

1.1 Lateral Vibration. In recent years, unexpected excessive bridge
lateral vibrations caused by foot traffic, attracted great public attention.
Some of the footbridges due to such vibrations were closed immediately
after opening. It happened at the suspension Park Bridge in Kiev (1957),
the Solferino Bridge (SB) in Paris [1] , the London Millennium Bridge
(LMB), [2], and the T-Bridge (TB) in Tokyo [3]. The list of some foot-
bridges with excessive lateral vibrations is shown in Table 1. Undoubtedly,
this list is not complete. The scale of the problem is reflected in the most
recent measurements with the excessive lateral sway, recorded on at least
a dozen footbridges of different structural forms and sizes [4-9]. The focus
of post-SB, LMB, TB researches has been to simulate mathematically the
lateral excitation mechanism in swaying footbridges with early attempts
assuming a tendency of pedestrians to synchronize pacing rate with strong
vibrations [10-17], a phenomenon generally known as ”synchronous lateral
excitation” (SLE) or ”pedestrian lock-in”. In the case of the T-Bridge
[3], it was suggested that some pedestrians started with random walking
then synchronized their steps to the girder motions (the model of direct
resonance), and this increased the lateral girder vibrations. That process
is needed to be extended at a time. Thus, the model of direct resonance
does not predict any sudden transition to a vibrating state but assumes
a continuous increase in the vibration when the amplitude of pedestrian
load is increased. The most popular variant is the semi-empirical model
developed by Arup [2], based on the analysis of the LMB dynamic response.
It proposed the lateral force exerted by a pedestrian to maintain balance
being directly proportional to velocity of lateral vibration in fact, resulting
in a force of negative damping. The net damping existing in the struc-
ture occupied by people, would vanish as pedestrians reached a critical
number, causing exponentially increasing vibrations. However, some of the
recent site measurements [4,5,9] have shown excessive vibrations in spite of
lack of evidence of synchronization, indicating that this is not necessarily
the cause. According to the site measurements on the footbridges with
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excessive lateral vibrations, the following events were observed: the ratio
between the frequencies of two girder modes was about 2:1, and there were
conditions for the direct resonance of the vertically (or torsionally) excited
mode. In Table 1, one can see that in four cases, the dominant (excited)
modes were vertical and lateral, and in two cases, there were torsional and
lateral. Fujino et al. [18] and Xia and Fujino [19] studied, with the exper-
imental and analytical point of view, the model of a cable-stayed bridge
characterized by vibration modes having the integer frequency ratio 2:1:1
(the vertical girder mode, lateral girder mode and symmetric in plain cable
mode), and proving that internal resonance could be reached. Blekherman
[20,21] used models of an elastic pendulum and double pendulum with only
a vertical force to explain the phenomenon of lateral vibration caused by
internal resonance in which lateral vibration was induced by vertical (or
torsional) one. When the increasing control parameter exceeds its critical
value (a bifurcation point), the system loses its stability followed by a rise in
lateral vibration. Piccardo et al. [22] presented the detailed critical review
of existing models that demonstrated the phenomenon of excessive lateral
vibration. In some cases, for example, in the LMB and Clifton Suspension
Bridge, the corresponding natural frequency of the lateral mode was about
0.5 Hz which is equal to half of the lateral walking frequency. Besides, the
results of laboratory tests carried out at the Imperial College discovered a
lateral force being a function of a lateral displacement. Using this infor-
mation, Piccardo et al. [22] showed that, in the case of the lateral natural
frequency of about 0.5 Hz (or about half the lateral walking frequency), the
parametric resonance may occur. However, when a footbridge has the first
lateral frequency more than 0.7 Hz, their model is not applicable. All of
that means that for the same pedestrian load three dynamic situations can
exist for a footbridge with an excessive lateral movement: either the lower
lateral frequency is about 0.5 Hz (or is equal to half the lateral walking
frequency), or it is approximately within the range 0.8 ∼ 1.2 Hz, or both
previous situations exist simultaneously. In the present paper a model of an
elastic pendulum with two simultaneously applied forces (one is an external
harmonic vertical force while the other is a lateral one that is a function
of a lateral displacement) are used in order to describe the excessive lat-
eral vibrations caused by internal resonance. To solve the corresponding
nonlinear differential equations, the method of multiple time scales is used.
This method allows constructing the first order autonomous nonlinear dif-
ferential equations and determining the steady-state solutions and their
stability. Autoparametric vibrations describe the behavior of a one-mass
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system with 2 DOF with quadratic nonlinearities whereas its control pa-
rameter is slowly changing. The control parameter is a static displacement
caused by an external static vertical force. An elastic pendulum (in the case
of a frequency ratio about 2:1) describes the phenomenon of transferring
energy continuously back and forth between two modes in the case of free
vibrations, and from the high frequency mode to the low frequency mode
in the case of forced vibrations. It is the simplest model for describing this
phenomenon for more complex systems (for example, for some footbridges).
The relation between an elastic pendulum and footbridges is shown in the
example of the coupled vibrations of a suspension bridge. It is shown that
the elastic pendulum can be treated as a model of a footbridge, and all
qualitative results obtained for the model can be used for understanding
dynamics of pedestrian bridges. Using experimental data from the tests of
the LMB, the Changi Mezzanine Bridge (Singapore) and the SB (Paris),
it is shown that the linear models cannot describe adequately the dynamic
behavior of footbridges with excessive lateral vibrations. The analysis of
the model of an elastic pendulum shows the different reason for arising
excessive lateral vibrations than synchronization among pedestrians.

2 MATHEMATICAL MODEL.

2.1 Equations of motion. Consider the planar motion of a mass point
m attached to a still support by means of a massless linear spring of stiff-
ness k (Fig. 1). The so-called free length, l0, is the distance between the
support and the mass point when the spring is not strained. The variables
x and θ describe the extensibility of the spring and the pendulum angular
motion, respectively. The present paper makes no differentiation between
the angular and lateral motions. The state of stable static equilibrium
corresponds to the case when x and θ equal to zero and the quantity xst
represents the static spring displacement due to gravity (xst = mg/k). The
vertical force Py and lateral force Pz are applied to the mass m.
The kinetic and potential energies of the system have the following expres-
sions;

T = 0.5m(ẋ2 + (l + x)2θ̇2) (1)

V = (mg + Py)(l − (l + x)cos(θ))− Pz(l + x)sin(θ) + 0.5k(xst + x)2 (2)
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where l = l0 + xst and g - gravity acceleration. The Lagrangian L = T −V
can be written as follows:

L = 0.5m(ẋ2 + (l + x)2θ̇2)
−(mg + Py)(l − (l + x)cos(θ))
+Pz(l + x)sin(θ)− 0.5k(xst + x)2

(3)

Denoting
u = x/l,
ω2
s = k/m,
ω2
p = g/l,

and dividing the Lagrangian by the common factor ml2, the modified La-
grangian will be

L1 = 0.5(u̇2 + (1 + u)2θ̇2)− 2(ω2
p + Py/lm)(1− (1 + u)cos(θ))

+2Pz(1 + u)sin(θ)/ml − ω2
s(u+ ω2

p/ω
2
s)

2)
(4)

where ωs - the frequency of a spring mode, ωp - the frequency of a pendu-
lum mode. Using Lagrange’s equations and including damping terms, the
following equations of motion are obtained:

ü+ ω2
su = −(cs/m)u̇+ (1 + u)θ̇2 − ω2

p(1− cos(θ))
+(Py/lm)cos(θ) + Pzsin(θ)/lm

(5)

(1 + u)θ̈ + (ω2
p + Py/lm)sin(θ) = −(cp/m)θ̇ − 2u̇θ̇ + Pzcos(θ)/lm (6)

where cs, cp - are damping coefficients for the spring mode and pendulum
mode, respectively. It should be noted that the Lagrangian (4) contains
the terms proportional to uθ̇2 and uθ2 because cos(θ) = 1 − 0.5θ2. The
presence of those terms produce an internal resonance when ωs is near 2ωp.

According to the laboratory tests carried out at Imperial College which
involved pedestrians walking on a moving platform, the lateral dynamic
force applied by pedestrians is a function of a lateral displacement (Dallard
et al. [23], Piccardo et al.[22]). The data were obtained during the tests
performed on a harmonically moving platform with pedestrians walking
with the same frequency as the platform. The dynamic load factor α,
which depends on the considered harmonic load and on the load direction
(Dallard et al. [23]), can be approximately expressed as follows:

α = α0 + α1q(t) (7)

where α0 is a dynamic loading factor on a stationary platform (α0 = 0.04),
α1 can be calculated from the data of the graph for equation (7) (α1 ≈
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2m−1), and q(t) is a lateral displacement of the platform. In the terms of
the problem at hand α can be rewritten as

α = α0 + α2θ(t) (8)

where α2 = α1l.
Denoting Py = acos(ω3t) and using (8), Pz can be expressed as follows:

Pz = (α0 + α2θ(t))acos(ω4t) (9)

where
ω3 is the frequency of an external vertical force,
ω4 is the frequency of an external lateral force.

2.2 Nondimensionalization. The following nondimensionalization is
adopted.

τ = ωpt,
λ1 = ωs/ωp,
λ2 = ωp/ωp = 1,
Ω1 = ω3/ωp,
Ω2 = ω4/ωp,
cs/2mωs = n1,
cp/2mωp = n2,
a/lmω2

p = λ2
1xst/l = λ2

1ρ
where xst -a static displacement from a vertical external force,
ρ = xst/l - nondimensional parameter.
As a the result, the following nondimensional equations can be obtained:

u′′ + λ2
1u = −2n1λ1u

′ + λ2
2θ

′2(1 + u)− 0.5λ2
2θ

2

+ρλ2
1cos(Ω1τ)cos(θ) + (α0 + α2θ)ρλ2

1cos(Ω2τ)sin(θ)
(10)

(1 + u)θ′′ + λ2
2sin(θ) = −2n2θ

′ − 2u′θ′

−ρλ2
1cos(Ω1τ)sin(θ) + (α0 + α2θ)ρλ2

1cos(Ω2τ)cos(θ)
(11)

where ()′′ = d2()/dτ2, ()′ = d()/dτ , λ2 = 1.

3 SOLUTION by PERTURBATION METHOD of MULTI-
PLE TIME SCALES.

Steady forced vibrations (primary resonance) are investigated in the vicinity
of the stable state equilibrium of the system. Solutions for u and θ are
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assumed in the following perturbation series with two different time scales
[24,25].

u(τ) = εu1(τ0, τ1) + ε2u2(τ0, τ1) + . . . (12)

θ(τ) = εθ1(τ0, τ1) + ε2θ2(τ0, τ1) + . . . (13)

where ε
is a small nondimensional parameter and τn = εnτ , n = 0, 1.
Damping coefficients and static displacement from external force are

assigned so that the effects of the damping and force appear in the same
perturbation equations. Thus, n1 = εξ1, n2 = εξ2, ρ = ε2νst.

The control parameter νst is considered as a slow changing one. To make
the equations more compact, the two differential operators are defined as:

D0 ≡ ∂( )/∂τ0 (14)

D1 ≡ ∂( )/∂τ1 (15)

By using equations (12), (13) to solve equations (10), (11) and equating
coefficients of the same powers of ε, we obtain:
order ε:

D2
0u1 + λ2

1u1 = 0 (16)

D2
0θ1 + λ2

2θ1 = 0 (17)

order ε2:

D2
0u2 + λ2

1u2 = −2D0D1u1 − 2ξ1λ1D0u1 + λ2
2(D0θ1)2

−0.5λ2
2(θ1)

2 + λ2
1νst0.5(exp(iΩ1τ0) + exp(−iΩ1τ0))

(18)

D2
0θ2 + λ2

2θ2 = −u1D
2
0θ1 − 2D1D0θ1 − 2ξ2D0θ1 − 2D0u1D0θ1

+(α0 + α2θ1)νstλ2
10.5(exp(iΩ2τ0) + exp(−iΩ2τ0))

(19)

The steady-state solutions of equations (16), (17) can be obtained in
the following form:

u1 = A1(τ1)exp(iλ1τ0) + Ā1(τ1)exp(−iλ1τ0) (20)

θ1 = A2(τ1)exp(iλ2τ0) + Ā2(τ1)exp(−iλ2τ0) (21)

where A1, A2 are arbitrary functions at this level of approximation.
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3.1 Internal resonance. The tuning conditions of internal resonance
are described by

λ1 = 2λ2 + εσ1 (22)

Ω1 = λ1 + εσ2 (23)

where σ1 - internal detuning, σ2 - external detuning.
Taking into consideration Ω1 = 2Ω2, using (20), (21), (22), (23) to solve
equations (18), (19), and selecting secular terms the following solvability
conditions will be obtained:

−2A′
1iλ1 − 2λ2

1iξ1A1 − 1.5A2
2exp(−iσ1τ1) + 0.5λ2

1vstexp(iσ2τ1) = 0
(24)

−2A′
2i− 2iξ2A2 −A1Ā2(2λ1 − 1)exp(iσ1τ1)

+0.5λ2
1α0vstexp(i0.5(σ1 + σ2)τ1) = 0

(25)

Using polar notation An = 0.5anexp(iβn), (n=1,2), and separating real
and imaginary parts we obtain

−λ1a
′
1 − λ2

1ξ1a1 − 0.375a2
2sin(γ2) + 0.5λ2

1vstsin(γ1) = 0 (26)

λ1a1β
′
1 − 0.375a2

2cos(γ2) + 0.5λ2
1vstcos(γ1) = 0 (27)

−a′2 − ξ2a2 + 0.25a1a2(2λ1 − 1)sin(γ2)
−0.5λ2

1α0vstsin(0.5(γ2 − γ1)) = 0
(28)

a2β
′
2 − 0.25a1a2(2λ1 − 1)cos(γ2)

+0.5λ2
1α0vstcos(0.5(γ2 − γ1)) = 0

(29)

where
γ1 = −β1 + σ2τ1 (30)

γ2 = 2β2 − β1 − σ1τ1 (31)

Substituting β1, β2 by γ1, γ2 in equations (26) − (29) the following system
of equations will be obtained

a′1 = −λ1ξ1a1 − 0.375a2
2sin(γ2)/λ1 + 0.5λ1vstsin(γ1) (32)

a′2 = −ξ2a2 + 0.25a1a2(2λ1 − 1)sin(γ2)
−0.5λ2

1α0vstsin(0.5(γ2 − γ1))
(33)

a1γ
′
1 = σ2a1 − 0.375a2

2cos(γ2)/λ1 + 0.5λ1vstcos(γ1) (34)

a2γ
′
2 = a2(−0.375a2

2cos(γ2)/a1λ1 + 0.5λ1vstcos(γ1)/a1)
−a2σ1 + 0.5a1a2(2λ1 − 1)cos(γ2)− λ2

1α0vstcos(0.5(γ2 − γ1))
(35)
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For the steady-state response, (an′ = 0, γn′ = 0) the solution is given
by

−λ1ξ1a1 − 0.375a2
2sin(γ2)/λ1 + 0.5λ1vstsin(γ1) = 0 (36)

−ξ2a2 + 0.25a1a2(2λ1 − 1)sin(γ2)− 0.5λ2
1α0vstsin(0.5(γ2 − γ1)) = 0 (37)

σ2a1 − 0.375a2
2cos(γ2)/λ1 + 0.5λ1vstcos(γ1) = 0 (38)

a2(σ1 + σ2)− 0.5a1a2(2λ1− 1)cos(γ2) +λ2
1α0vstcos(0.5(γ2− γ1)) = 0 (39)

As it follows from the equations (10), (11), in the case of lack coupling
between modes, the same mathematical model describes parametric reso-
nance for the lateral mode, but this case was studied by Piccardo et al.
[22].

4 NUMERICAL RESULTS.

For the case of internal resonance the problem is not linear and has two
alternatives to solve it numerically. The first one is to solve algebraic tran-
scendent equations (36) - (39) checking the stability of the solution for every
value of a control parameter. The perturbation method of multiple time
scales transforms the original nonautonomous system of equations (10) and
(11) into the autonomous ones, which allow, using standard methods, to
check dynamical stability of the system by constructing its Jacobian ma-
trix, where the latter is constructed on the basis of the equations (32) -
(35), and used to determine the stability of the periodic motions. If the
real part of each eigenvalue of the Jacobian matrix is not positive definite,
then the periodic motion is stable; otherwise it is unstable, thereby creating
the condition for appearing a bifurcation point.
The second alternative is to perform numerical and bifurcation analyses of
differential equations (32)− (35). The first alternative does not use initial
conditions of the problem which, from a physical point of view, are im-
portant for modeling vertical and lateral fluctuations (displacements and
velocities) of the system. The second alternative, however, does include
them. The present paper focuses on the second alternative. To illustrate
the behavior of the model, arbitrary parameters are chosen below.

In Fig. 2 the vertical a1 (the solid line) and lateral a2 (the dash dot
line) amplitudes are plotted as functions of the control parameter vst for
σ1 = σ2 = 0, ξ1 = ξ2 = 0.01. Fig. 2 shows that the bifurcation point
(vst = 0.000479 , marked by a star ) causes instability of the vertical mode,
and in the vicinity of the bifurcation point, the lateral amplitude increase
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is observed. Four points are marked by circles are plotted for the verti-
cal mode. The horizontal coordinates of those points are the bifurcation
ones. There are two bifurcation points in the case of the increasing control
parameter direction and two ones in the opposite direction. The analy-
sis of the type of bifurcation points is beyond of the scope of the present
paper. Besides, the dotted line displays the unstable behavior of the ver-
tical mode. So after the first bifurcation point (marked by a star) the
increasing control parameter does not increase the vertical respond. Fur-
thermore, the vertical mode loses its stability, and its additional energy
is transferred to the lateral mode while the vertical mode becomes con-
stant after the second bifurcation point. It can be treated as the vertical
mode pumps the lateral mode. Fig. 2 also exhibits bistability for both
modes, i.e. depending on initial conditions at a given control parameter
the system might develop to more than one stable state. An increase of
detuning between vertical and lateral frequencies leads to a shift of a bi-
furcation point, which results in an increase of the critical load. Fig. 3
shows that considerable detuning σ1 = −0.18, (σ2 = 0, ξ1 = ξ2 = 0.01)
results in a significant shift of the bifurcation point. In order to achieve
stability of a footbridge, one of the most direct solutions is to utilize sup-
plemental viscous damping devices to elevate a structural damping level of
a bridge. This concept is based on the premise that additional damping
will have to shift the bifurcation point to the unreachable point for the
given maximum pedestrian load. Fig.4 and Fig.5 show influence of vertical
and lateral dampers for parameters σ1 = 0.01, σ2 = 0, ξ1 = 0.04, ξ2 = 0.01,
and σ1 = 0.01, σ2 = 0, ξ1 = 0.01, ξ2 = 0.04,, respectively. Though the
value of the bifurcation point in both cases is approximately the same,
the behavior of the system is different in the region before the bifurcation
point. If the purpose of applied dampers is achieved, the lateral dampers
will almost exclude the lateral movement. The simultaneous application
of vertical and lateral dampers is much more effective, and it is shown in
Fig.6 at parameters σ1 = 0.01, σ2 = 0, ξ1 = 0.04, ξ2 = 0.04 . Thus, different
qualitative results will be obtained applying dampers to a driven oscillator
(for example, in the case of direct resonance) and doing the same for an
elastic pendulum. In the first case, dampers will mitigate vibrations of the
oscillator while in the second case they will shift a bifurcation point and,
consequently, will increase the critical load. It also can serve for checking
truthfulness of a considered model.
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5 THE COUPLED VIBRATIONS of the PEDESTRIAN SUS-
PENSION BRIDGES.

Before it was written that Lagrangian (4) contained the terms proportional
to uθ2 and uθ̇2. Mandelstam et al.[26] noted that these terms would exist
in the Lagrangian of all autoparametric systems (with the frequency ratio
equal to 2:1), not just an elastic pendulum.

In the present paper the relation between the proposed model and a
real structure is illustrated by the example of a suspension bridge (Fig. 7).
It assumed that the bridge has inextensible suspenders, and its deck has
two axes of symmetry.

Lateral vibrations of such bridges can occur without torsion. For the
analysis of those vibrations the Lagrangian equations are used in the fol-
lowing form:

= 0 (40)

where T and V are kinetic and potential energy, respectively, and qi -
principal coordinates. Let us denote the vertical displacement of a deck
by y, and the angle, as a result of the lateral displacement, by θ. The
kinematic scheme of displacements is accepted according to Fig. ( 8). The
solutions of the equations (40) can be express in the form:

y(x, t) = ψ1(x)q1(t) (41)

θ(x, t) = ψ2(x)q2(t) (42)

where ψ1(x), ψ2(x) are satisfied by the boundary conditions of the hinged
type girder. Supposing the velocity of a vertical displacement as ∂y

∂t , the
velocity of a lateral displacement is expressed as:

∂(h+ y)θ
∂t

, (43)

for h =H(x) + H(x) = const , Fig(7 ).
The kinetic energy has the following expression:

(44)

where m(x) - the distribution of the mass of a bridge per unit length.
The mass of a cable is neglected, and hangers are considered as having
infinite stiffness.

d

dt

∂T

∂q̇i
− ∂T

∂qi
+
∂V

∂qi

T = 0.5
∫ L

0
m(x)(

∂y

∂t
)2 dx+ 0.5

∫ L

0
m(x)(

∂(h+ y)θ
∂t

)2 dx
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Substituting the values of velocities of vertical and lateral displacement in
(44), the kinetic energy can be expressed as

T = 0.5d1q̇
2
1 + 0.5d2q̇

2
2 + 0.5d3q1q̇

2
2 + · · · (45)

where
d1 =

∫ L
0 m(x)ψ1(x)2 dx = Mv,

d2 = h2
∫ L
0 m(x)ψ2(x)2 dx = h2Ml = Jm,

d3 = 2h
∫ L
0 m(x)ψ1(x)ψ2(x)2 dx

The expression for the potential energy is formed by elastic properties of a
bridge, a gravitational part caused by the mass of a bridge, and the external
forces. The potential energy formed by elastic properties can be calculated
on the basis of one general formula:

0.5EJ
∫ L

0
(
∂2χ

∂x2
)2 dx (46)

where
E - the corresponding modulus of elasticity,
J - the corresponding moment of inertia,
χ - the corresponding following displacement of a bridge.

1. the vertical displacement of a deck

χ1 = y − 0.5(h+ y)θ2 (47)

2. the lateral displacement of a deck

χ2 = (h+ y)θ (48)

3. the vertical displacement of a cable

χ3 = y − 0.5(H(x) + y)θ2 (49)

4. the lateral displacement of a cable

χ4 = (H(x) + y)θ (50)

Substituting (47) - (50) into (46), the necessary potential energy will be
obtained. The potential energy for a gravitational part can be expressed
as:

g

∫ L

0
m(x)(y − 0.5(h+ y)θ2) dx (51)
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where
g - the gravity acceleration.
By using (47) and (48) correspondingly, the potential energy from the ex-
ternal vertical force Fv(x, t) and the external lateral force Fl(x, t) will be
the following:

VFv =
∫ L

0
Fv(x, t)(y − 0.5(h+ y)θ2) dx (52)

where Fv(x, t) = f1(x)q3(t),

VFl
=

∫ L

0
Fl(x, t)((h+ y)θ) dx (53)

where Fl(x, t) = f2(x)q4(t), f1(x) and f2(x) are the distribution of ver-
tical and lateral forces along the bridge, respectively.
Having calculated all members of the potential energy, the general following
expression will be obtained:

V = 0.5d4q
2
1 + 0.5d5q

2
2 + d6q1q

2
2 + VFv + VFl

+ · · · (54)

where

Jv - vertical moment of inertia of a cross-section,
Jl - lateral moment of inertia of a cross-section.

The members q1q̇22 and q1q
2
2 can be named as the specific ones. Their

presence in the Lagrangian function (L = T - V) leads to the nonlinear
differential equations with the quadratic nonlinearity, and as described on
the model of an elastic pendulum in the presence of the special frequency
ratio close to 2:1, and the external vertical resonant harmonic force of the
enough value, to internal resonance. Generalizing this assertion, it can be
said if the energy of a pedestrian bridge includes the specific members,
the internal resonance is possible. Other words, if a pedestrian bridge (for
any scheme) has the excessive lateral movement, its energy will include the
specific members. Gol’denblat [27] studied the free vibrations of coupled
suspension bridges, built the simplified model of a suspension bridge and
found experimentally that the energy is transferred continuously back and
forth between the two modes of vertical and lateral vibrations in the case

d4 = 2EJv
∫ L
0 (∂

2ψ1(x)
∂(x)2

)2 dx,

d5 = EJlh
2
∫ L
0 (∂

2ψ2(x)
∂x2 )2 dx+EJl

∫ L
0 (∂

2H
∂x2 ψ2(x) +2∂H∂x

∂ψ2(x)
∂x +H ∂2ψ2(x)

∂x2 ) dx
−hg

∫ L
0 m(x)ψ2(x)2 dx,
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of the frequency ratio close to 2:1. Using equations (40), (45), (54) and
including damping terms, the following equations of motion are obtained:

(55)

(56)

where
ω1

2 = d4/d1,
ω2

2 = d5/d2,
Py =

∫ L
0 f1(x)ψ1(x) dx,

Pz =
∫ L
0 f2(x)ψ2(x) dx,

q3 = cos(Ω̂1t),
q4 = cos(Ω̂2t),
Ω̂1 - the frequency of an external vertical force,
Ω̂2 - the frequency of an external lateral force.
In the case of pedestrian bridges according to Matsumoto et al. [28], the
distribution of the pedestrian mass (of the Np pedestrians) walking with the
dominant frequency Ω1 along the bridge, commonly assumed as uniform in
crowd conditions, and Py can be rewritten as

Py = a

∫ L

0
ψ1(x) dx (57)

where

mps - the mass of a single pedestrian,
L - the footbridge span length.
Using the equations (7), (8) and (53), the Pz in the equation (56) can be
rewritten as

) (58)

where
α2 = hα1

q̈1 + ω1
2q1 = − c1

Mv
q̇1 + 0.5 d3

Mv
q̇2

2 − d6
Mv
q22 −

Py

Mv
cos(Ω̂1t)

+0.5 1
Mv
q22cos(Ω̂1t)

∫ L
0 f1(x)ψ1(x)ψ2(x)2 dx

− 1
Mv
q2cos(Ω̂2t)

∫ L
0 f2(x)ψ1(x)ψ2(x) dx

(1 + d3
Jm
q1)q̈2 + ω2

2q2 = − c2
Jm
q̇2

− d3
Jm
q̇1q̇2 − 2 d6

Jm
q1q2 + h

Jm
q2cos(Ω̂1t)

∫ L
0 f1(x)ψ2(x)2 dx

+ 1
Jm
q1q2cos(Ω̂1t)

∫ L
0 f1(x)ψ1(x)ψ2(x)2 dx

− h
Jm
Pzcos(Ω̂2t)− 1

Jm
q1cos(Ω̂2t)

∫ L
0 f2(x)ψ1(x)ψ2(x) dx

a = gmps
√
Np/L,

Pz = a(α0

∫ L

0
ψ2(x) dx+ α2q2(t)

∫ L

0
ψ2(x)2 dx
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5.1 Nondimensionalization. The following nondimensionalization is
adopted.

As a result, the following nondimensional equations can be obtained

τ = ω2t,
λ1 = ω1/ω2,
λ2 = ω2/ω2 = 1,
Ω1 = Ω̂1/ω2,
Ω2 = Ω̂2/ω2,
u1 = q1/h,

u2 = q2,
c1/Mvω1 = 2n1,
c2/Jmω2 = 2n2

u1
′′ + λ1

2
u1 = −2n1λ1u1

′ + s1u2
′2 − s2u2

2 − k1ρ1λ1
2
cos(Ω1τ)

+s5u2
2cos(Ω1τ)− s6u2cos(Ω2τ)

(59)

(1 + s3u1)u2
′′ + λ2

2
u2 = −2n2u2

′ − s3u1
′u2

′ − s4u1u2

−ρ1α0λ1
2
k2cos(Ω2τ)− ρ1α2u2λ1

2
k3cos(Ω2τ)

+s7u2cos(Ω1τ) + s8u1u2cos(Ω1τ)− s9u1cos(Ω2τ)
(60)

where
()′′ = d2()/dτ2, ()′ = d()/dτ , λ2 = 1.
s1 = 0.5d3/(Mvh),
s2 = d6/(Mvhω2

2),
k1 =

∫ L
0 ψ1(x)dx/h,

ρ1 =
√

(Np)
gmps

Lω1
2Mv

,

k1ρ1 = q1st/h,
q1st - a static displacement from an external vertical force,

k2 = Mv
∫ L
0 ψ2(x)dx/Mlh,

k3 = Mv
∫ L
0 ψ2(x)2dx/Mlh,

k2ρ1 = (k2/k1)(q1st/h) if k1 6= 0,
s3 = d3h/Jm,
s4 = 2d6h/(Jmω2

2),
s5 = 0.5

∫ L
0 f1(x)ψ1(x)ψ2(x)2dx/(Mvhω2

2),
s6 =

∫ L
0 f2(x)ψ1(x)ψ2(x)dx/(Mvhω2

2),
s7 = h

∫ L
0 f1(x)ψ2(x)2dx/(Jmω2

2),
s8 = h

∫ L
0 f1(x)ψ1(x)ψ2(x)2dx/(Jmω2

2),
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5.2 Solution by Perturbation Method of Multiple Time scales.
Solutions for u1 and u1 are assumed in the following perturbation series with
two different time scales repeating the method which was used before.

(61)

(62)

where τn = εn , n = 0, 1....
Damping coefficients and static displacement from external force are as-
signed so that the effects of the damping and force appear in the same per-

To make the equations more compact, the two differential operators are
defined as:

D0 ≡ ∂( )/∂τ0 (63)

D1 ≡ ∂( )/∂τ1 (64)

By using equations (61), (62) to solve equations (59), (60) and equating
coefficients of the same powers of ε, we obtain:

order ε:

= 0 (65)

= 0 (66)

order ε2:

(67)

(68)

The steady-state solutions of equations (89) and (90) can be obtained in
the following form:

) (69)

s9 = h
∫ L
0 f2(x)ψ1(x)ψ2(x)dx/(Jmω2

2)

u1(τ) = εu11(τ0, τ1) + ε2u12(τ0, τ1) + . . .

u2(τ) = εu21(τ0, τ1) + ε2u22(τ0, τ1) + . . .

turbation equations. Thus, n1 = εξ1, n2 = εξ2, ρ1 = ε2ρ1, f1 = ε2f1,f2 =
ε2f2.

D2
0u11 + λ1

2
u11

D2
0u21 + λ1

2
u21

D2
0u12 + λ1

2
u12 = −2D0D1u11 − 2λ1ξ1D0u11 + s1(D0u21)2

−s2u2
21 − 0.5λ1

2
ρ1 exp(iΩ1τ0)− 0.5λ1

2
ρ1 exp(−iΩ1τ0)

D2
0u22 + λ2

2
u22 = −2D0D1u21 − s3u11D

2
0u21 − 2ξ2D0u21

−s3D0u11D0u21 − s4u11u21 − 0.5α0λ1
2
ρ1k2 exp(iΩ2τ0)

−0.5α0λ1
2
ρ1k2 exp(−iΩ2τ0)

−0.5α2λ1
2
ρ1k3u21 exp(iΩ2τ0)− 0.5α2λ1

2
ρ1k3u21 exp(−iΩ2τ0)

u11 = A1(τ1) exp(iλ1τ0) +A1(τ1) exp(−iλ1τ0
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) (70)

where A1(τ1) and A2(τ1) are arbitrary functions at this level of approxima-
tion.

5.3 Internal resonance. The tuning conditions of internal resonance
are described by

λ1 = 2λ2 + εσ1 (71)

Ω1 = λ1 + εσ2 (72)

where σ1 - internal detuning, σ2 - external detuning.
Taking into consideration Ω1 = 2Ω2, using (69) - (72) to solve equations
(67), (68), and selecting secular terms, the following solvability conditions
will be obtained:

(73)

(74)

Using polar notation An = 0.5anexp(iβn), (n=1,2), and separating real and
imaginary parts we obtain

(75)

(76)

(77)

(78)

where
γ1 = −β1 + σ2τ1 (79)

γ2 = 2β2 − β1 − σ1τ1 (80)

Substituting β1, β2 by γ1, γ2 in the equations (75) − (78), the following
system of equations will be obtained

(81)

u21 = A2(τ1) exp(iλ2τ0) +A2(τ1) exp(−iλ2τ0

−2A′
1iλ1 − 2λ2

1iξ1A1 − (s1 + s2)A2
2exp(−iσ1τ1)

−0.5λ2
1ρ1exp(iσ2τ1) = 0

−2A′
2i− 2iξ2A2 −A1Ā2(s3(λ1 − 1) + s4)exp(iσ1τ1)
−0.5α0λ1

2
ρ1k2exp(i0.5(σ1 + σ2)τ1) = 0

−λ1a
′
1 − λ

2
1ξ1a1 − 0.25(s1 + s2)a2

2sin(γ2)− 0.5λ2
1ρ1sin(γ1) = 0

λ1a1β
′
1 − 0.25(s1 + s2)a2

2cos(γ2)− 0.5λ2
1ρ1cos(γ1) = 0

−a′2 − ξ2a2 + 0.25(s3(λ1 − 1) + s4)a1a2sin(γ2)
+0.5α0λ1

2
ρ1k2sin(0.5(γ2 − γ1)) = 0

a2β
′
2 − 0.25(s3(λ1 − 1) + s4)a1a2cos(γ2)

−0.5α0λ1
2
ρ1k2cos(0.5(γ2 − γ1)) = 0

a′1 = −λ1ξ1a1 − 0.25(s1 + s2)a2
2sin(γ2)/λ1 − 0.5λ1ρ1sin(γ1)
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(82)

(83)

(84)

The four equations (81) - (84) can be treated as the averaging equations
because the method of averaging and the method of multiple scales are
equivalent. Comparing the averaging equations (32) - (35) (an elastic pen-
dulum) and the averaging equations (81) - (84), one can see that their
structures are the same and they are differed only by the constant coeffi-
cients for nonlinear terms. It means that the qualitative features of both
systems are the same, and as a consequence, an elastic pendulum describes
the qualitative features of dynamic behavior of suspension footbridges.
Moreover, studying internal resonance for a double pendulum (coupled
torsional and lateral modes), Blekherman [21] showed that its averaging
equations were similar to the averaging equations of an elastic pendulum
(coupled vertical and lateral modes).
As a result, all systems of nonlinear differential equations, describing the dy-
namical behavior of corresponding physical models with 2 degree of freedom
providing appearance of internal resonance for the frequency ratio 2:1, are
reduced to the same system of nonlinear averaging differential equations.
Complementing Mandelstam et al. [26], one can say that a mathematical
model of the all above-mentioned systems with autoparametric coupling is
the same. As consequence, an elastic pendulum can be treated as a model
describing qualitative features of all pedestrian bridges with autoparametric
coupling (two coupled modes).

6 EXPERIMENTAL DATA.

It is worth noting that dynamic loading from human walk is primarily
vertical with the frequency range 1.5 - 2.3 Hz. If a vertical (or torsional)
natural frequency gets into this range the resonant vertical vibration can be
induced by pedestrians. This type of vibrations with noticeable amplitudes
occurred in many bridges (Wheeler [29], Bachmann et al. [8]). The magni-
tude of the lateral force (with the dominate frequency two times less than
the vertical dominant one) from a human walk is smaller by one order than
the vertical force and usually it was not taken into consideration. However,

a′2 = −ξ2a2 + 0.25(s3(λ1 − 1) + s4)a1a2sin(γ2)
+0.5α0λ1

2
ρ1k2sin(0.5(γ2 − γ1))

a1γ
′
1 = σ2a1 − 0.25(s1 + s2)a2

2cos(γ2)/λ1 − 0.5λ1ρ1cos(γ1)

a2γ
′
2 = a2(−0.25(s1 + s2)a2

2cos(γ2)/a1λ1 − 0.5λ1ρ1cos(γ1)/a1)
−a2σ1 + 0.5(s3(λ1 − 1) + s4)a1a2cos(γ2)

+α0λ1
2
ρ1k2cos(0.5(γ2 − γ1))
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the situation was changed when lateral vibrations in bridges have occurred.
The excessive lateral vibrations were observed in a number of footbridges
(Table 1) and there are a few site tests described in the literature. In the
present paper, for supporting the proposed model, mostly some results of
the field tests of three footbridges (Dallard et al. [2, 23], Brownjohn et
al. [4,5] and the Solferino Bridge) are discussed. All tests for the London
Millennium Bridge (LMB), the Change Mezzanine Bridge (CMB) and the
Solferino Bridge with a slowly increasing load showed the fast growth of
lateral vibrations after reaching some critical number of pedestrians.
The LMB (the shallow pedestrian suspension bridge) was opened in June
2000 and closed soon after opening because of unexpected excessive sway-
ing. The bridge consists of three spans: a central span of 144 m, a northern
span of 81 m, and a southern span of 108 m. Dallard et al. (2001a) wrote,
that on the day of opening, the central and southern spans moved by 70
mm and 50 mm at the frequencies 0.95 and 0.8 Hz, respectively, primar-
ily in a horizontal plane. There was no substantial lateral movement of
the northern span. Excessive vertical vibrations were not observed. As
shown in Table 1, the frequency ratio for the third vertical mode of the
central span and the second lateral mode of the same span is 1.89:0.95 =
2:1, providing the conditions for the appearance of internal resonance. Un-
fortunately, the values of vertical mode frequencies for the south and north
spans were not published. Intensive testing of the bridge was carried out
and showed a good agreement between calculated and measured frequen-
cies. The authors noted a highly nonlinear overall effect from a crowd of
pedestrians. A group of people walked in a circulatory route was gradually
increased and the fast growth of the lateral motion was observed (Dallard
et al. [2]). Accelerometers and video cameras were used to record what
happened. This was the essential experiment for understanding that the
bridge had parametric vibrations at the frequencies 0.475 Hz and 0.95 Hz.
In another similar experiment on the north span (Dallard et al. [2]) , the
fast growth of lateral vibrations was observed at the frequency 1Hz. Unfor-
tunately, the authors did not process the records by the Fourier transform
to obtain the spectrum of frequencies for lateral and vertical vibrations.
In order to quantify the lateral response, Dallard et al. [23] proposed the
pedestrian negative damping model for the lateral frequency range of a
pedestrian load 0.7 - 1.1 Hz. However, the above-mentioned model cannot
explain the excessive lateral vibration at the frequency 0.475 Hz. Besides,
the lateral walking force coefficient (k) has been defined by a back analysis
from the tests and cannot be applied for other footbridges. The model
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cannot predict the steady-state amplitude, as it is linear. If the external
force corresponding to a certain number of pedestrian is less than its critical
value, there are no vibrations in a footbridge because damped free vibra-
tions are decreased to zero, and the existing external force does not excite
lateral vibrations at all, while the external force is more than its critical
value, the situation is similar to an unstable linear oscillator: a small dis-
turbance may generate indefinitely- amplifying movements. It is, perhaps,
appropriate to note that on the day of opening the LMB was congested by
people, and with a view of point of a linear model, the lateral vibrations
are impossible at a frequency of 0.95 Hz because its corresponding mode is
skew symmetric.
The Changi Mezzanine Bridge (CMB) was opened in 2002. It is a 140-
m-span shallow arch footbridge that connects two passenger terminals at
Changi Airport, Singapore. The preliminary studies described by Brown-
john et al. [4] showed that the first lateral vibration mode (LS1) at approx-
imately 0.9 Hz and the first symmetric torsional mode (TS1) at approx-
imately 1.64 Hz could be easily excited by a pedestrian movement. The
mode shapes and frequencies were computed with predictions by the finite-
element method (FEM).. The modes LS1 and TS1 had complex spatial
forms and were calculated and compared with those obtained experimen-
tally, and showed a good agreement. The LS1 frequency was 0.891 Hz by
FEM, and 0.924 Hz from the field experiment. The TS1 frequency was
1.64 Hz by FEM, and 1.856 Hz by site testing. The spatial mode LS1 has
an element of vertical component while TS1 has a significant lateral one.
Brownjohn et al.[5] described the field tests on CMB with excessive lateral
vibration. The analysis predicted that the critical number of pedestrian
was equal to 145 people. About 150 people stepped onto the bridge in
groups of 10, spaces approximately 15 sec. apart. The people were given
instructions and asked to walk casually, not to walk in step, but to move at
their own comfortable pace. After all the people had circulated the bridge
for 3 min, there were told to stop walking and remain motionless. After
free vibration was observed, walking resumed; then the people stopped for
a few minutes, and then left the bridge. The envelopes of mid-span lateral
and vertical acceleration response in the main chord at mid-span during the
test were plotted. Before the first stop, a maximum acceleration amplitude
in LS1 of 0.15 m/sec2 was recorded, and the corresponding displacement
amplitude equaled 5.5 mm. The described field test includes three consec-
utive important components: increasing controlled loading, construction of
envelopes of lateral and vertical movements, and processing records by the
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Fourier transform. In the beginning of walking, both vertical and lateral
vibration levels seem to increase with pedestrian numbers, and the level
of the vertical signal was much more than the level of the lateral signal.
As seen from the envelopes, after reaching the number of pedestrians about
100, the level of the lateral signal continued increasing steadily, but the level
of the vertical signal did not grow. Besides, the lateral amplitude response
grew disproportionately to the increase in pedestrian numbers. Both these
phenomena can be treated as the evidence of nonlinearity of the system,
and correlation between LS1 and TS1.

Besides, the processing of records by the Fourier transform revealed exis-
tence of the single spectral lines, showing the lateral and vertical movements
corresponding to the frequency 0.9 Hz but there were no such phenomena
for the high-frequency mode. (It can be treated as the contradiction to
the hypothesis of synchronization among pedestrians). Brownjohn et al.[5]
interpreted but did not explain them as damping reduction for LS1. Thus,
they discovered that a multi frequency random process was converted into
single-frequency process for the lateral mode.

It is worth noting that the same phenomenon was observed during the
field tests of the cable-stayed T-Bridge, Tokyo, Fujino et al.[3]. In some
cases, the records of excessive lateral and vertical girder vibrations ( for an
uncontrolled crowd) showed their occurrence with the same frequency about
1Hz. It can be explained by internal resonance because of a spatial form of
a low frequency (about 1 Hz) mode was almost two times less than the high
mode vertical frequency. As a result, the excessive vertical vibrations were
observed with the frequency about 1 Hz from the vertical pedestrian load
with the dominant vertical frequency almost two times more. The authors
discovered weak (20%) synchronization of pedestrians. A certain amount
of debate continues on the question of whether or not synchronization can
arise during an excessive lateral movement. The authors did not observe
synchronization among people on the LMB and CMB. Brownjohn et al.[5]
denied its occurrence because of absence of a sharp non-resonant peak with
doubled LS1 frequency in the vertical response. It can be noted that, until
now synchronization has never been observed during the field tests with a
controlling crowd. Although synchronization was not observed on the LMB
and CBM, it may occur for large-amplitude vibrations on some congested
footbridges. However, in this case synchronization should be considered
not as the reason but as the consequence of the dynamic process in the
state of instability. Yet, the aim of design is to avoid instability of a bridge.

The Solferino arch footbridge located in the centre of Paris was closed
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shortly after inauguration: it showed hampering lateral vibrations when
carrying a crowd of people; this resulted in the need for thorough inves-
tigations of its behavior under pedestrian loading. These studies involved
site testing and confirmed the existence of a phenomenon causing the high
amplitude lateral vibrations. Dziuba et al.[1] published a very detailed pa-
per about the site tests of the Solferino footbridge. Only two of a number
of field experiments are mentioned in this paper. Two modes of vibration
were under consideration: a high frequency (torsional) mode with the nat-
ural frequency 1.56 Hz and a low frequency (lateral) mode with the natural
frequency 0.8 Hz.The separate groups of 16 and 61 pedestrians participated
in the tests. They marched over the bridge with a determined pace (the
frequency of excitation was 1.56 Hz, i.e. the resonant load), so there was
no process of forming synchronization. As a result, the only dominant
frequency (1,555 Hz) with the vertical displacement 5 mm was observed
for the group of 16 pedestrians. Then the second group of 61 pedestrians
marched over the bridge. The only lateral frequency 0.8 Hz was dominant
(with the lateral displacement 24 mm). It means that, when the value of
the vertical pedestrian load is more than its critical value. It also means the
coupling between two modes of vibration where the lateral low frequency
mode acts as an autoparametric vibration absorber concerning the high-
frequency mode.
Other researchers (Charles and Hoorpah [30]) investigated the Solferino
bridge and carried out a number of site tests for a group with the increas-
ing number of random walking pedestrians. Results of a limited number
of controlled pedestrian crowd tests indicated that there is a transition
point at which a rapid increase in the lateral response is triggered, and
the random lateral response is converted into a single frequency response.
The transition is explained as random pedestrian walking that becomes
”synchronized” when lateral bridge accelerations increase beyond 0.1 m/s2.
When pedestrians (160 people) were walking fast, the one frequency lat-
eral resonant process was not observed. This can be treated as the evidence
that the pedestrian walking frequencies is too far from the natural torsional
frequency 1.56 Hz.
Thus, the site tests on the LMB, CBS and Solferino Bridge revealed some
qualitative features of dynamical behavior of footbridges, which support
the model of internal resonance. The footbridges had two resonant high-
frequency and low-frequency modes, where the high-frequency was within
the load frequency range, and the natural frequency ratio is about 2:1.
In the case, when the increasing resonant load exceeded its critical value,
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the lateral resonance was observed. When the increasing random pedes-
trian load exceeded its critical value, the fast (almost instant) transition
from the lateral random process to a single- frequency process (the lateral
resonance) was observed. It can be treated as the evidence of a nonlin-
ear process, autoparametic coupling between modes and pumping the low-
frequency mode by the high-frequency one. Xia and Fujino [19] performed
a numerical experiment for a cable-stayed-beam structure (the model of
the T-Bridge, Tokyo). Results showed that, when the vertical random
excitation (a stationary random process) exceeded a critical value (there
was no saturation phenomenon), the amplitude was less than in the linear
case; the horizontal motions of the cable and beam were excited due to au-
toparametric nonlinear coupling (but there was no jump phenomenon), and
autoparametric responce fluctuated almost harmonically between two lim-
its, indicating nonstationary property, and the frequency ratio was about
2:1:1.

In this regard, it may be mentioned that most studies devoted to exces-
sive lateral vibrations of footbridges are focused on the explanation of large
amplitude vibrations. However, as demonstrated by the measured data to
the CBS Bridge, the Solferino Bridge and the T-Bridge, there is a problem
to explain changes of bandwidth. As mentioned above, the increase in load
leads to the expansion of vertical bandwidth, which can be explained by an
increase of vertical mode damping due to the increased number of pedes-
trians. However, the reduction in lateral bandwidth was observed during
experiments on the CBS and Solferino bridges. For the possible explana-
tion, the problem can be simplified by considering only vertical load as a
wideband random process. In this case Roberts [31], for the system with
autoparametric coupling, considered the small motions of the coupled sys-
tem near the vicinity of the unimodal response (the lateral movements are
zero), showed that the vertical mode acted essentially as a linear filter and
its response was a filtered random process, i.e. in our case (because of little
damping) it is a narrowband random process. It means that (because of
autoparametric coupling) the vertical response acts on the lateral mode as
a narrowband parametric excitation and it can be considered as time de-
pendent modification of the stiffness of the lateral mode. Thus, regarding
the lateral response, the whole coupled system acts as double filter reducing
the lateral frequency band. It is well known that, if the lateral bandwidth
is sufficiently small, the specific narrowband process is appeared as a lat-
eral response with a carrier frequency close to the natural frequency (it is
equal to a middle of bandwidth), and with a modulation frequency equaled
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to half of difference of edges of bandwidth which is changed because of a
random load. The similar model of a narrowband process was considered
by Davenport [32] and Ibrahim [33]. This process is distinctly seen on the
records for the lateral response on the congested T-Bridge, during experi-
ments with the Solferino Bridge, and it explains a single frequency signal
for the CBS Bridge. Another phenomenon can be seen from the measured
data of the field tests. The lateral response has modulation for the con-
gested T-Bridge, the Changi Mezzanine Bridge and the Solferino Bridge for
a random crowd with increasing number of pedestrians walking in circles.
However, there is no modulation (the Solferino Bridge, Charles and Hoor-
pah [30]) in the case of a random crowd with walking pedestrians grouped
together in a straight line. As the pedestrian load is random in space and
time, the phenomenon can be treated as evidence, that modulation mostly
depends on the pedestrian load random in space. The additional tests are
necessary to determine if in this case, the modal external excitation can
act like narrowband random process. Unfortunately, the response of the
corresponding high-frequency mode has been not published.

Cho et al.[34] studied the behavior of autoparametric absorber to ver-
tical narrowband random excitation. In this case, the jump phenomenon
of the cantilever mode and saturated phenomenon of the main system were
shown to occur if the excitation bandwidth was sufficiently small. How-
ever, as the band was increased, the jump and saturation phenomena dis-
appeared. Thus, a wideband random process can be interpreted as an
outer load for congested footbridges. The stability analysis, performed by
Cho et al. [34], showed that the equilibrium solution loses the stability by
Hopf bifurcation which is the reason for arising a limit cycle. Recent stud-
ies, performed by Racic and Brownjohn [35,36], and Ingolfsson et al.[37]
revealed that the vertical and lateral amplitude responses for single pedes-
trians are narrowband random processes with similar shapes. Ingolfsson
et al.[37] claimed that their tests revealed that synchronization is not a
pre-condition for the development of large amplitude lateral vibrations in
footbridges.
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Fig.1. Physical model.

Fig.2. Vertical (a1) and lateral (a2) amplitudes of response as functions of
control parameter (σ1 = −0.0, σ2 = 0.0, ξ1 = 0.01, ξ2 = 0.01).
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Fig.3. Vertical (a1) and lateral (a2) amplitudes of response as functions of control
parameter (σ1 = −0.18, σ2 = 0.0, ξ1 = 0.01, ξ2 = 0.01).

Fig.4. Vertical (a1) and lateral (a2) amplitudes of response as functions of control
parameter (σ1 = 0.01, σ2 = 0.0, ξ1 = 0.04, ξ2 = 0.01).
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Fig.5. Vertical (a1) and lateral (a2) amplitudes of response as functions of control
parameter (σ1 = 0.01, σ2 = 0.0, ξ1 = 0.01, ξ2 = 0.04).

Fig.6. Vertical (a1) and lateral (a2) amplitudes of response as functions of control
parameter (σ1 = 0.01, σ2 = 0.0, ξ1 = 0.04, ξ2 = 0.04).
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Fig.7. Suspension bridge.

Fig.8. Kinematical scheme of possible displacements of a strained suspension
bridge,o - a cable cross-section.
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CONCLUSION.

Excessive lateral vibrations in pedestrian bridges under a standard excitations (a
simultaneous action of a harmonic vertical force and lateral force depending on a
lateral movement) were studied assuming the model of an elastic pendulum with
the conditions of internal resonance. The increasing pedestrian load excited two
modes of vibrations with the frequency ratio close to 2:1. The control parameter
depended on a static displacement from an outer vertical force or number of pedes-
trians. Any increase of the control parameter past its critical value resulted in fast
growth for the lateral vibrations whereas the amplitude of the vertical vibrations
remained constant (saturated). The nonlinear differential equations of the forced
coupling vibrations of a footbridge were deduced for a suspension bridge. It was
shown that the averaging nonlinear differential equations of suspension bridges
and the elastic pendulum were the same (regardless of some constant coefficients)
what allowed to consider the latter (as any 2DOF system with autoparametric
coupling) as their model. The same assertion is also correct for the arch bridges
(Vlasov [38]). It was shown that the qualitative features of the dynamical behav-
ior of the proposed model corresponded to the same features of the footbridges
based on measurements obtained during the site tests. In the case of lack coupling
between modes, the same mathematical model describes parametric resonance for
the lateral mode. In the analysis a few governing parameters were under study:
load, damping and detuning. The increasing detuning between vertical (torsional)
and lateral frequencies leads to increase of the critical value of the pedestrian
load. Dampers, in the case of internal resonance, increased the critical value of
the pedestrian load while in the case of direct resonance the latter only mitigate
vibrations.
The calculations showed that there was the same shift of the critical value for the
vertical and lateral dampers with equal damping. It is advisable to apply lateral
dampers because they are more efficient in the region before the critical value.
In the case of an external random excitation as was shown by measured data of
footbridges and numerical calculations for the model, the response of a vertical
(torsional) mode was a narrowband process because of small damping. For the
wideband random increasing excitation, after losing stability of the system, the
vertical response was increased without saturation (the T-Bridge), and it had satu-
ration for the external narrowband random excitation, whereas the lateral response
became (in both cases) a single frequency signal (with modulation), which can be
treated as a specific narrowband random process. It was observed during the site
tests (the Changi Mezzanine Bridge, the Solferino Bridge, and the T-Bridge), and
this phenomenon corresponds to the analysis of the system with autoparametric
coupling.
Despite all phenomena (qualitative features) of the dynamical behavior of the foot-
bridges with an excessive lateral movement, described by the proposed model, are
supported by experimental data, it is necessary to carry out the additional tests
to determine the modal load and possible calculations. If the additional field tests
show the saturation of a vertical mode, then a narrowband random process can
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be adopted as a model of an external excitation for footbridges.
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APPENDIX.

d6 = EJvh
∫ L
0

∂2ψ1(x)
∂x2

∂ψ2(x)
∂x dx+EJlh
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0
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2ψ2(x)
∂x2 ψ2(x)

∂2ψ1(x)
∂x2 +2∂

2ψ2(x)
∂x2
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∂ψ2(x)
∂x

+ ψ1(x)(
∂2ψ2(x)
∂x2 )2)dx− 0.5EJv

∫ L
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2H
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+2∂
2ψ1(x)
∂x2 H ∂ψ2(x)

∂x )dx+EJl
∫ L
0
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2H
∂x2 ψ2(x)+2∂H∂x
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∂x +H ∂2ψ2(x)

∂x2 )(∂
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∫ L
0
m(x)ψ1(x)ψ2(x)2dx
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