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ABSTRACT: More than a century ago Milankovitch presented for the first 

time the correct and complete solution for the theoretical minimum thickness, t, 

of a semicircular masonry arch with radius, R (t/R=0.1075). This paper uses a 

variational formulation approach and shows that this solution is not unique and 

that it depends on the stereotomy exercised. 
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1 INTRODUCTION 
Robert Hooke [1] was apparently the first to propose a rational rule for sizing 

masonry arches by describing the analogy in the load-path between a “hanging 

chain”, which forms a catenary in tension under its own weight and a masonry 

arch which stands under compression. This analogy conceived by Hooke is 

expressed in the literature “As hangs the flexible line, so but inverted will stand 

the rigid arch” ([2-4]). The problem of determining the minimum thickness of 

masonry arches has challenged the engineering community since the early 

eighteen century (Couplet [5]), was tackled with remarkable ingenuity by 

Monasterio in the early nineteen century ([6,7]), was addressed rigorously in the 

early twenty century in the nearly unknown work by Milankovitch [8,9] and 

remains worth discussing until today (Heyman [10]).  

This paper shows that Milankovitch’s [8,9] solution for the minimum 

thickness of a semicircular arch t/R=0.1075 is not unique and that it depends on 

the stereotomy exercised and the associated coordinate system adopted. The 

adoption of vertical cuts, first introduced by Lamé and Clapeyron [11] (see also 

Timoshenko [12]) and an associated cartesian coordinate system yields a 

slightly higher value for the minimum thickness (t/R=0.1095) than the one 

computed by Milankovitch. Furthermore, the paper shows that Heyman’s [13] 

widely accepted solution (t/R=0.106) remains unconservative regardless the 

stereotomy exercised on the arch―even if one assumes vertical joints (Heyman 

[10]). 
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2 PHYSICALLY ADMISSIBLE THRUST-LINES OF AN 

ARCHED MONOLITH WITH ZERO TENSILE STRENGTH 

The remarkable directness of Hooke’s [1] “hanging chain” as a design tool for 

sizing stable masonry arches is probably the reason that even in the recent 

literature it is widely believed that the catenary (the alysoid) is a physically 

admissible thrust-line of the masonry arch. The thrust-line (or the line of 

resistance, Moseley [14], or the druckkurve, Milankovitch [8,9]) is defined as 

the geometrical locus of the application points of the resultant thrust-force that 

develops at any cross section of the arch. Given that the calculation of the 

minimum thickness of the masonry arch derives from the limiting arch that is 

thick enough so that it can just accommodate a physically admissible thrust-

line, the identification of physical admissible thrust-lines is central in this study. 

Fig. 1 (left) plots two different minimum thrust-lines within a monolithic 

elliptical arch with b/a=0.75 and t/a=0.15 (a and b are the semispan and the 

height of the arch respectively). They have been constructed with a custom-

made computer code which repeats the force equilibrium as point O runs from 

the crown to the springing. These two physically admissible thrust-lines are not 

distinguishable in the scale of the arch; yet, if one zooms in the neighbourhood 

isolated with the dashed parallelogram, the two thrust-lines are clearly different 

as shown in Fig. 1 (right). Both minimum thrust-lines are equally correct and 

the fact that they lie within the physical boundaries of the arch ensures that the 

arch is stable (see also Alexakis and Makris [16]). 

 

 
Figure 1. Monolithic elliptical arch with the two different physically admissible minimum thrust-

lines (left), b/a=0.75 and t/a=0.15 (a=semispan and b=height). The two physically admissible 

thrust-lines (ρ(φ) obtained with successive radial cuts and η(x) obtained with successive vertical 

cuts) are distinguishable in the enlarged parallelogram (right). The catenary (alysoid) that passes 

by points A and F is not a physically admissible thrust-line. 
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In structural engineering the derivation of multiple solutions from equilibrium 

analysis is not common. The “counterintuitive” result of having two different 

yet neighboring theoretically correct answers for the thrust-line depending on 

the coordinate system adopted, derives from the request to express the load path 

in a two-dimensional structure with finite thickness, t, with the thrust-line―that 

is a concept inherent to a one-dimensional structure (the “hanging chain”). 

Interestingly, the inverted “hanging chain” (catenary) that passes from the 

extreme points A and F of the extrados of the arch shown in Fig. 1 offers a third 

line that is different from the two minimum thrust-lines―the one computed by 

taking radial cuts after adopting a polar coordinate system and the other 

computed with vertical cuts after adopting a cartesian coordinate system. 

The idea of analyzing the stability of masonry arches by taking vertical cuts 

rather than radial cuts goes back to the seminal work of Lamé and Clapeyron 

[11], who showed that for symmetrical arches of any shape, the calculation of 

the position of the intrados hinge can be greatly simplified if instead of radial 

cross-sections, vertical cross-sections are contemplated ([12]). 

 

3 MINIMUM THICKNESS OF A SEMICIRCULAR 

MONOLITH WITH ZERO TENSILE AND INFINITE 

COMPRESSION STRENGTH 

3.1 Polar coordinate system—Solution with a variational 

formulation 
Milankovitch [8,9] computed the correct value of the minimum thickness of the 

arched monolith, t/R=0.10748 by deriving the closed-form expression of the 

minimum thrust-line in association with the information that when the circular 

monolith assumes its minimum thickness, the minimum thrust-line also touches 

the intrados of the arch. 

When the thickness of the arch is sufficiently reduced and the minimum 

thrust-line touches the intrados, the arch reaches a limit-equilibrium state by 

developing a five-hinge symmetric mechanism (Couplet [5]). Accordingly, 

points A, K, and F shown in Fig. 2 (left) are imminent hinges of the arch at its 

limit equilibrium state. When assuming a rupture along the radial direction (that 

is consistent with the polar coordinate system adopted by Milankovitch [8,9]) 

moment equilibrium of half the arch and of the top hinged portion of the arch 

ABK about hinge K gives (Makris and Alexakis [17,18], Alexakis [19]) 
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where φr is the rupture angle (see Fig. 2 left). Adopting as a reference level the 

horizontal axis x (y=0), the potential energy of the semicircular arch is  
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Figure 2. Left: Formation of a hinge mechanism by assuming that the rupture at the intrados 

hinge, K, happens along the radial direction. Right: Admissible values of t/R for a given rupture 

angle φr as they result from moment equilibrium of the hinged mechanism shown in Fig. 2 left. 

The principle of stationary potential energy (δV(φr)=0) indicates that the hinged semicircular arch 

with a radial rupture is in equilibrium when df(φr)/dφr=0. This happens when φr=54.484o and the 

corresponding minimum thickness is t/R=0.10748. 
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where W=(π/2)tR is the weight and yo=R(12+(t/R)
2
)/6π is the vertical coordinate 

of the center of gravity of half the arch. When a radial rupture has been assumed 

the two unknowns t/R and φr are related via moment equilibrium with a relation 

t/R=f(φr), which represents the accepted root of Eq. (1) ([17-19]). Accordingly, 

the potential energy of the circular arch given by Eq. (2) can be expressed as a 

function of φr 
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The structural system shown in Fig. 2 (left) is a typical case where the only 

forces (weights) acting in the system are conservative and where the work of all 

forces is accounted by the potential energy V(φr) given by Eq. (3). According to 

the principle of stationary potential energy, the geometrically admissible hinged 

mechanism shown in Fig. 2 (left) is in an equilibrium state if and only if the 

total potential energy is stationary, i.e. 
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Substitution of Eq. (3) into Eq. (4) gives 
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The quantity in brackets in Eq. (5) is always positive; therefore, Eq. (5) is 

satisfied when df(φr)/dφr=0. The result of Eq. (5) shows that the symmetric 

hinged arch is in an equilibrium state (δV(φr)=0) if and only if  
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The solution of Eq. (6) offers the unknown location of the rupture angle 

φr=54.484
o
 which is precisely the value computed by Milankovitch [8,9]. 

Substitution of the value of the rupture angle φr=54.484
o
 (that is for a rupture 

assumed along the radial direction) into the acceptable root of the moment 

equilibrium of Eq. (1) one obtains the minimum thickness value t/R=0.10748. 

Fig. 2 (right) shows that the maximum of equation df(φr)/dφr=0 happens at 

φr=54.484
o
 and that the maximum value of the thickness is t/R=0.10748. 

Heyman’s [13] “work-balance” concept was implemented by Ochsendorf 

[15] who developed a trial-and-error procedure by selecting successive values 

of the rupture angle φr together with the corresponding values of t/R until the 

“work-balance” equation is satisfied. Ochsendorf [15] assumed that the rupture 

of the arch at the intrados hinge is along the radial direction and his trial-and-

error procedure converged to the correct value of the rupture angle φr=54.5
o
 and 

minimum thickness t/R=0.1075 initially discovered by Milankovitch [8,9]. 

 

3.2 Cartesian coordinate system - Solution with a variational 

formulation 
In this section we consider again that the circular arch has reached its limit 

equilibrium state by developing a five-hinge symmetric mechanism. 

Accordingly, points A, K, and F shown in Fig. 3 (left) are imminent hinges of 

the arch at its limit equilibrium state. We now assume that the rupture happens 

along the vertical direction that is consistent with a cartesian coordinate system. 

For a vertical rupture the weight W1 of the hinged portion of the semicircular 

arch ABK and the abscissa x1 of their center of gravity are 
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Figure 3. Left: Formation of a hinge mechanism by assuming that the rupture at the intrados 

hinge K happens along the vertical direction. Right: Admissible values of t/R for a given rupture 

location xr/R as they result from moment equilibrium of the hinged mechanism shown in Fig. 3 

left. The principle of stationary potential energy (δV(xr/R)=0) indicates that the hinged 

semicircular arch with a vertical rupture is in equilibrium when df(xr/R)/d(xr/R)=0. This happens 

when xr=0.7736R and the corresponding minimum thickness is t/R=0.10946. 

 

In Eqs. (7) and (8), xr=Rc2sin(φr) is the unknown abscissa of the rupture of the 

arch; while, c1 and c2 are the dimensionless quantities 
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With reference to Fig. 3 (left), moment equilibrium of the top portion of the 

arch ABK about hinge K gives 
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while moment equilibrium of the entire half arch about hinge F gives the 

expression of the horizontal thrust-force at the crown H 
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The calculus that follows is identical to the calculus that has been presented in 

the case of a polar coordinate system (Eqs. (2) to (5)); therefore, the symmetric 

hinged arch with a vertical rupture at point K is in an equilibrium state 

(δV(xr/R)=0) if and only if 
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Numerical processing of the graph appearing in Fig. 3 (right) shows that the 

maximum of the graph df(xr/R)/d(xr/R) happens at xr=0.7736R which 

corresponds to a rupture angle φr=BΩK=54.923
ο
 and a minimum thickness 

value t/R=0.10946. Heyman [13] incorrectly assumed that the line of action of 

the resultant thrust-force is tangent to the intrados of the arch―therefore 

tangent to the minimum thrust-line at point K; and this was the origin of the 

slight error in the calculation of his minimum thickness, t/R=0.106; rather than 

the correct value t/R=0.1075 ([10,16-20]). Furthermore, Heyman’s [13] solution 

remains unconservative regardless the stereotomy exercised on the arch―even 

if one assumes vertical joints (Heyman [10]). 

The results for the minimum allowable thickness and the rupture location of 

a semicircular monolith with zero tensile strength subjected to its own weight is 

summarized in Table 1 together with the list of past publications which derived 

the correct results with various approaches. 

 

Table 1. Minimum allowable thickness and rupture locations of a semicircular 

monolith with zero tensile strength 
Radial cuts – Polar Coordinate System Vertical cuts – Cartesian Coordinate System 

Rupture angle 

φr=BΩK=54.484o 

Minimum thickness 

t/R=0.10748 

Rupture angle 

φr=BΩK=54.923o 

Minimum thickness 

t/R=0.10946 

M. Milankovitch [8,9]: Geometric Solution 

J. Ochsendorf [15]: Trial-and-error solution 

of the “work balance” equation 

This work: Principle of Stat. Potential Energy 

This work: Principle of Stationary Potential 

Energy 

 

4 CONCLUSIONS 
This paper revisits the limit equilibrium analysis of a semicircular monolith 

with zero tensile strength and radius R. When the monolith assumes its 

minimum thickness t, a symmetric five hinge mechanism is imminent and at 

this state any physically admissible thrust-line shall pass by the extrados 

springing points and be tangent to the extrados at the center of the crown of the 

arch. The paper shows that Milankovitch’s [8,9] solution, t/R=0.1075, is not 

unique and that it depends on the stereotomy exercised and the associated 

coordinate system. The adoption of a cartesian coordinate system yields a 

neighboring thrust-line and a different, slightly higher value for the minimum 

thickness (t/R=0.1095). This result has been obtained in this paper with a 

variational formulation which emerges as a powerful analysis tool that is 

liberated from the concept of the thrust-line ([16-20]). 
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