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ABSTRACT: In this paper, a critical review on modeling of wind loads on long-
span bridges is traced. Starting from the theoretical background associated to the
classical thin airfoil model and from a generalized quasi-steady wind-loading de-
scription, a unified consistent approach is proposed. The general frameworks of
both frequency-domain and time-domain loading models are exploited, general-
izing available approaches and eliminating commonly diffused inconsistencies, in
order to preserve the main formal scheme of thin-airfoil-based classical results.
The strong duality between time-domain and frequency-domain descriptions is
clearly highlighted for both motion-related (aerolastic) and buffeting loads. Fi-
nally, in the same unified context, a brief overview of the main open topics and
of possible effective strategies to account for some unconventional effects (e.g.,
related to flow three-dimensionality and nonlinear aerodynamics) is drawn.

KEYWORDS: Bridge aerodynamics; Bridge aeroelasticity; Thin airfoil theory;
Bluff-body aerodynamics.

1 INTRODUCTION
In the early part of the last century, developments in aesthetics of bridge building
and improvements in materials and technologies led to the construction of pro-
gressively longer, structurally more efficient and slender bridges. It was only af-
ter the Tacoma Narrows suspension bridge, collapsed shortly after its completion
in 1940, that the potentially unstable behavior of long-span bridges under wind
actions began to be investigated, highlighting that such structures can be highly
sensitive to unsteady wind effects. Wind pressures acting upon a bridge deck are
strongly time-dependent due to the local fluctuations of wind velocity, induced by
both undisturbed and signature turbulence; the former being intrisic in the incident
flow, the latter being initiated by the bridge itself. Moreover, when the bridge de-
forms under the wind loads, changes in structural configuration affect flow pattern
and aerodynamic features, determining a fluid-structure coupling, usually referred
to as aeroelastic interaction. As a result, in the case of unfavourable aerodynamic
properties of the bridge deck, violent structural oscillations can occur, even at
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relatively mild wind speeds, and such an occurrence could not be diagnosed by
considering only static analyses and steady wind forces. Therefore, unsteady wind
loads are generally the most critical external loads which have to be considered
in design of long-span bridges, aiming to avoid significant levels of wind-excited
oscillations. These latter can be mainly of two types: limited amplitude (non-
divergent) oscillations, generally produced by vortex shedding (signature effects)
and/or by the random action of wind gusts (namely, buffeting effects, related to
the intrinsic turbulence); divergent oscillations, produced by both galloping and
flutter instabilities [1]. Generally, the former class of responses may be considered
primarily as a serviceability problem, responsible mainly for excessive vibrations
and having a potential for serious fatigue damage in the long term. On the other
hand, the latter class, in particular flutter, may be considered as an ultimate de-
sign condition. In detail, flutter is a self-excited oscillatory instability (involving
the interaction among aerodynamic, inertial and elastic structural forces), which
corresponds, at certain critical wind speeds, to aerodynamic forces acting to feed
energy into the oscillating structure, increasing its vibration magnitude, some-
times to catastrophic levels.

In order to design bridge structures against wind, the wind forces arising on
possibly oscillating deck and coupled with the structural response have to be prop-
erly described. Actually, the theoretical milestone is surely still represented by the
closed-form solutions obtained for the case of a zero-thick airfoil profile (namely,
the thin airfoil) moving within an approaching inviscid two-dimensional flow un-
der a small angle of incidence [2–5]. In detail, the time-domain formulation based
on Wagner and Küssner indicial approaches [2, 3], and the mixed frequency-
time description developed by Theodorsen and Sears [4, 5], were reorganized and
further developed by many authors (e.g., [6–10]), revealing the main theoretical
background needed to systematically explain some complex fluid-structure inter-
action phenomena, such as flutter instabilities. In this context, and among others,
the pioneering work of Davenport [11] and Scanlan [8, 12] on bridge buffeting
and flutter can be surely considered the most important effective attempt to pave
the way towards modern bridge aerodynamics and aeroelasticity, giving almost
realistic descriptions of both wind-induced forces acting upon long-span bridges
and wind-structure interaction mechanisms.

Nevertheless, when unstreamlined bodies are considered, possible large flow
separations, reattachments, recirculation zones and vortex shedding can occur, in-
ducing significant unsteady effects and preventing to identify a thin and well de-
fined boundary layer. Thereby, in these cases, the hypothesis of inviscid and fully
attached flow, generally acceptable for streamlined bodies immersed in a flow
with a small angle of attack, must be often rejected. Accordingly, the descrip-
tion of wind loads on cylindrical bodies with a bluff sectional geometry, such as
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typical bridge decks, can not be directly obtained by using the thin airfoil theory.
In order to overcome such a drawback, several theoretical and computational ap-
proaches have been developed, based on both frequency-domain and time-domain
descriptions [9]. Although proper circulatory and non-circulatory terms appear as
clearly recognizable in the thin airfoil theory, in the context of bridge aerodynam-
ics wind-induced forces are generally represented by distinguishing in-phase and
out-of-phase components with respect to the structural motion and/or with respect
to the wind gusts. Therefore, in this case a certain distinction can be made only re-
ferring to flow memory-dependent (pseudo circulatory) and independent (pseudo
non-circulatory) contributions.

As regards frequency-domain approaches, Scanlan [8, 12–17] profitably ex-
ported some features of the Theodorsen results, by describing the wind loads in-
duced by sectional harmonic motions via a linearized framework based on experi-
mentally-evaluated frequency-dependent filter functions (namely, the flutter deriva-
tives). These latter linearly relate the aeroelastic forces to the structural motion,
and identify equivalent contributions describing aerodynamic stiffness and aero-
dynamic damping coupled with the structural dynamical features. Such an ap-
proach has been proven to be extremely effective in synthetically representing the
aeroelastic response of long-span bridges and the corresponding wind-structure
interaction mechanisms, allowing to straight estimate critical states for flutter on-
set [16–23], as well as to effectively face problems related to the bridge aeroelas-
tic control [24] and to the energy harvesting from wind-induced bridge vibrations
[25].

Attempts to define effective time-domain formulations, based on the defini-
tion of suitable indicial functions (describing the time evolution of the aerody-
namic forces induced by a step variation in the effective angle of attack, as the
result of a bridge step motion or of a sharp-edged gust), can be also found in
recent literature [9, 17, 26, 27]. Nevertheless, time-domain approaches did not
developed as much as the frequency-based models, due to the difficulties arising
in the direct experimental (or numerical) evaluation of the aerodynamic response
to proper, replicable and controllable step-wise motions or gusts [28, 29]. In the
context of the bridge aerodynamics and following the classical results for the air-
foil by Garrick [30] and Jones [31], Scanlan and co-workers [8, 32] firstly com-
bined Fourier synthesis and rational approximation techniques for analytically-
extracting a-posteriori approximations of indicial functions from experimentally-
determined frequency-domain data (e.g., flutter derivatives). Starting from more
refined formulations of the indicial response and considering generalized rational
approximation procedures, similar approaches have been recently developed in
[9, 26, 33–35]. Nevertheless, referring to motion-related wind loads, indicial re-
sponses which are indirectly estimated from flutter derivatives implicitly include
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non-circulatory contributions associated with the experimental procedures em-
ployed to determine flutter derivatives themselves. Therefore, when flow memory-
independent effects are not negligible, the corresponding estimates of the motion-
related indicial functions can not be generally considered as fully consistent with
Wagner theory, that formally describes circulatory effects only.

As a matter of fact, the relative importance of non-circulatory contributions
with respect to circulatory ones can be considered as problem dependent. For ex-
ample, pseudo non-circulatory effects can be generally considered negligible for
truss decks with large openings and grillages, or when the flow regime and the
sectional geometry induce wide bluff features with large vortex structures. Never-
theless, many modern long-span bridges exhibit almost elongated and streamlined
cross-sections, characterized by mildly-bluff performances. As a consequence,
this occurrence on one hand does not allow to apply directly the ideal thin air-
foil model and, on the other hand, can lead to non-circulatory effects generally
not completely negligible with respect to circulatory ones [36]. This matter can
be more evident when eccentricity between elastic and gravity axes, and/or small
values of the reduced velocity (or equivalently high values of the reduced fre-
quency) are considered. Moreover, when unstreamlined bodies are addressed, a
fundamental aspect in time-domain formulations is related to the choice of the
indicial responses to be considered in the loading description, and their relation-
ships with downwash effects induced by the body motion. Partially borrowing the
structure of the thin airfoil theory, available time-domain formulations have been
generally developed by postulating the type of the indicial functions and of the
downwash contributions to which they combine by convolution. As a result, such
an axiomatic approach has led to different formulations, often not directly com-
parable each other and that can suffer from some consistency and/or effectiveness
lack. In particular, addressing the case of bridge deck sections, downwash contri-
butions given by the pitch rate are usually neglected, and this choice is justified
by invoking the sectional bluffness. Nevertheless, referring to modern bridge sec-
tions, they can be not bluff enough to justify such an assumption.

In the context of motion-related wind loads, a general theoretical framework
based on the main formal scheme of the classical results obtained by Theodorsen
and Wagner, and developed without introducing a-priori simplifications, has been
recently proposed in [27], contributing to overcome some consistency problems
with respect to the thin airfoil model. In this way, the mutual role played by
memory-independent terms and pseudo-circulatory downwash effects has been
established, opening also to the possibility of drawing some insights on issues to
which the thin airfoil theory does not provide suitable indications (for instance,
for describing motion-induced drag force component).

In this paper, moving from the thin airfoil theory, the general frameworks of
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available frequency-domain and time-domain models for describing wind loads
on bridge decks are discussed and generalized, by eliminating commonly diffused
inconsistencies. As a result, a unified approach consistent in conventions, nota-
tion, assumptions and formulation is proposed. Finally, some open topics and
advanced strategies aimed to account for some unconventional effects are criti-
cally addressed.

2 PROBLEM SETTING
The deck of long-span bridges can be regarded as a slender line-like cylinder
and, by neglecting any effect related to possible skew winds (as it is customary
in bridge aerodynamics), its longitudinal axis is assumed to be orthogonal to the
mean wind flow. Accordingly, disregarding also three-dimensional local effects
(induced for example by cables, barriers, dividers, pylons, and other possible deck
details) and assuming a perfect flow correlation along the bridge span, the flow
distribution around the girder can be generally considered, as a first approxima-
tion, as bi-dimensional in the plane of the bridge cross-section (wind load sec-
tional model). Namely, the assumption of a fully correlated flow along the bridge
span is indicated as strip assumption and it corresponds to assume that the span-
wise flow and the pressure redistribution are negligible, so that pressures upon
any section are due only to the wind incident on that section, without considering
effects related to adjacent span strips [11, 37, 38]. Although such an assumption
can fail in many real cases (namely, when the structure has dimensions compara-
ble with the turbulence length-scales of the wind flow), it represents the basis of
the current theories for describing wind forces acting upon bridge decks.

Accordingly, let a rigid cylinder-like body with an infinite span-length be con-
sidered, immersed in a low-speed wind flow orthogonal to the body axis, and
characterized by an elongated cross-section S, whose chord dimension is B. Fur-
thermore, let ρ be the air density, ν the air kinematic viscosity, and U the mean
velocity of the approaching flow. With reference to Fig. 1, the body has three
degrees of freedom, corresponding to horizontal (p), vertical (h) and angular (α)
displacements in the cross-sectional plane. Rotation is assumed to be about a
chord point distant aB/2 from the chord midpoint (with a > 0 for a downstream
rotation center). Moreover, let the reference configuration of the body be defined
by the angle of attack αo between the mean wind direction and the cross-section
chord.

The flow-induced pressures acting on the body can be reduced, with respect to
the rotation axis, to the following generalized force components (Fig. 1): along-
the-wind force (drag, D), across-the-wind force (lift, L), and pitching moment
(M ). They are usually expressed per unit span-length as:

D(t) = PoBCD(t), L(t) = PoBCL(t), M(t) = PoB2CM (t) (1)
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where Po = ρU2/2 is the mean kinetic pressure, t is the time variable, and Cg(t)
(with g = D,L,M ) are the dimensionless force coefficients, generally depending
on the shape of S, on the Reynolds number Re = UB/ν, and on the angle of
attack. Finally, as a notation rule, in the following quantities Cog = Cg(αo) (with
g = D,L,M ) are used to indicate dimensionless force coefficients associated to
steady mean loads in the reference configuration.

U

B

aB/2

p(t)

h(t)↵(t)

L(t)

D(t)
M(t)

S

↵o

Figure 1. Wind load sectional model: notation and conventions

3 BACKGROUND: THIN AIRFOIL AERODYNAMICS
Let a rigid flat plate with vanishing thickness-to-width ratio (namely, the thin
airfoil) be considered, immersed in a two-dimensional, incompressible and in-
viscid approaching flow. Let x ∈ [−B/2, B/2] be the chord coordinate, with
x = −B/2 at the airfoil leading edge and x = B/2 at the trailing edge. As a re-
sult of the potential flow theory [7], flow-induced pressure distribution on a fixed
thin airfoil under a small incidence αo reduces in: a zero drag force, an upward
(negative) lift with CoL = −2παo, and a clockwise (positive) pitching moment
with CoM = π(1/2 + a)αo = −CoL(1/2 + a)/2. Accordingly, static aerodynamic
forces are equivalent to the lift force applied at the upstream quarter-chord point
(namely, the aerodynamic center or forward neutral point, at x = −B/4) and
they vanish for αo = 0. It is worth pointing out that, as it is customary in bridge
analysis [16], lift sign convention herein employed is opposite with respect to the
classic aeronautical one.

The problem of characterizing the aerodynamic forces acting on the thin air-
foil harmonically oscillating in the flow about αo = 0 was solved by Theodorsen
[4]. Small oscillations about the mid-chord axis, and described by h(t) = h̃eiωt

and α(t) = α̃eiωt, are herein considered, where ω is the oscillation circular fre-
quency, h̃ and α̃ are the small motion amplitudes, and i is the imaginary unit.
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Generalized self-excited loads per unit length have been described by Theodorsen
as the superposition of the following circulatory (c, depending on the frequency
of oscillations and accounting for flow unsteady effects) and non-circulatory (nc,
frequency-independent and including inertial effects due to the moved fluid mass)
contributions:

Lnc(s) = PoBCL/α
(
h′′

B
+
α′

2
− a

2
α′′
)

(2)

Lc(k, s) = PoBCL/α C(k) α̂(s) (3)

Mnc(s) = −PoB2 CM/α

2
(
1
2 + a

) [(1

2
− a
)
α′ +

(
1

8
+ a2

)
α′′ − 2a

h′′

B

]
(4)

Mc(k, s) = PoB2CM/α C(k) α̂(s) = −B
2

(
1

2
+ a

)
Lc(k, s) (5)

where s = 2Ut/B is the dimensionless time, k = Bω/(2U) is the reduced fre-
quency of oscillation, Cg/α = ∂Cog/∂αo, and f ′ denotes the first derivative of f
with respect to s, the first time derivative resulting in ḟ = 2Uf ′/B. It is worth
remarking that, as it is customary in the aeronautic field, quantities k and s are
normalized with respect to the half-chord length.

The frequency-dependent function C(k) introduced in Eq. (3) is the Theodorsen’s
complex circulatory function, equal to [4]:

C(k) = FT (k) + iGT (k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH(2)

0 (k)
(6)

where H(2)
· are Hankel functions of the second kind. It is possible to show [7]

that for low frequency regimes (namely, quasi-stationary motions) the imaginary
part GT (k) = Im[C(k)] vanishes, and the real part FT (k) = Re[C(k)] tends to 1
(Fig. 2). It can be noted that unsteady wind loads expressed by Eqs. (3) and (5)
are defined in terms of a mixed formulation involving both time and frequency,
and that the circulatory contributions depend on the effective instantaneous angle
of attack α̂ at the three-quarter chord point (namely, the rear neutral point, at
x = B/4)

α̂ = α+
ḣ

U
+
B

2

(
1

2
− a
)
α̇

U
= α+ 2

h′

B
+

(
1

2
− a
)
α′ (7)

corresponding to the instantaneous downwash dimensionless velocity of a fluid
particle at the rear neutral point.

The aerodynamic loads induced by an arbitrary motion of the thin airfoil in a
potential flow can be expressed moving from the results proposed by Wagner [2],
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Figure 2. The thin airfoil model. Theodorsen and Sears functions (on the left). Wagner (φ) and
Küssner (ψ) indicial functions (on the right)

who solved the problem of an abrupt change of the angle of attack from αo = 0. In
detail, considering α(t) = H(t)α̃, where H(t) is the Heaviside function and α̃ is
a small finite value so that the first-order approximation of all physical quantities
can be applied, the non-steady circulatory lift can be expressed as:

Lc(s) = PoBCL/α φ(s) α̃ (8)

where CL/α = −2π and φ(s) is the Wagner’s indicial lift-growth function, de-
scribing the transient evolution of the lift force up to its static value, and charac-
terized by φ(0) = 0.5 and φ(s) tending to 1 for s approaching infinity (Fig. 2).
Due to the special simplicity of the thin airfoil theory, the instantaneous angle of
attack α̂(s) and the Wagner’s indicial function suffice to define both lift and mo-
ment in the case of an arbitrary motion of the airfoil, involving also the vertical
displacement h. In this case, invoking the linear superposition principle and as-
suming that thin airfoil moves from the rest at s = 0 (with φ(s) = 0 for s < 0),
circulatory terms Lc andMc in the time domain can be expressed by the following
Duhamel’s convolution integrals [6]:

Lc(s) = PoCL/αB
∫ s

−∞
φ(s− τ)α̂′(τ) dτ

= PoCL/αB
[
φ(s)α̂(0) +

∫ s

0
φ(s− τ)α̂′(τ) dτ

]
(9)

Mc(s) = PoCM/αB
2

∫ s

−∞
φ(s− τ)α̂′(τ) dτ = −B

2

(
1

2
+ a

)
Lc(k, s) (10)

or equivalently by

Lc(s) = Po
∫ s

−∞
α̂(τ)Iα̂(s− τ) dτ (11)
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where Iα̂(s) = BCL/α [φ(0)δ(s) + φ′(s)] is the thin-airfoil’s impulse response
function (with Iα̂(s) = 0 for s < 0), corresponding to α̂(s) = δ(s), δ(s) being
the Dirac’s delta function.

By using Fourier synthesis, a strong duality between time-domain and frequency-
domain descriptions has been proven by Garrick [30], resulting in the following
relationships among the Theodorsen’s circulatory function C(k), the Wagner’s in-
dicial function φ(s) and the impulse response function Iα̂(s):

φ(s) =
1

2πi

∫ ∞
−∞

C(k)

k
eiks dk (12)

C(k) = ik
∫ ∞
0

φ(τ)e−ikτ dτ =
Iα̂

BCL/α
= φ(0) + φ′(k) (13)

the frequency-dependent function f(k) being the Fourier transform of the time-
dependent function f(s).

Frequency-domain formulation allows to relate the power spectrum SLc(k) of the
circulatory lift to the one (Sα̂(k)) of the angle of attack at the three-quarter chord
point as [32]:

SLC
(k) = (PoBCL/α)2|χT (k)|2Sα̂(k) (14)

where |χT (k)|2 = C(k)C∗(k) = F2
T (k) + G2T (k) is the so-called Theodorsen’s

aerodynamic admittance function, C∗ denoting the complex conjugate of C. An
excellent approximation of the Wagner’s function was proposed by Jones [31],
resulting to be very useful because of its simple Fourier transform

φ(s) ∼= ao −
n∑
j=1

aje−bjs (15)

with n = 2, ao = 1, a1 = 0.165, a2 = 0.335, b1 = 0.0455, b2 = 0.3. Equation
(15) includes a steady term ao corresponding to the limit of φ(s) for s tending to
infinity, and n exponential functions that can be regarded as a cascade of filters.
Accordingly, by combining Eqs. (12), (13) and (15), a rational approximation of
C(k) results from:

FT (k) = ao − k2
n∑
j=1

aj
b2j + k2

, GT (k) = −k
n∑
j=1

ajbj
b2j + k2

(16)

The influence of the intrinsic turbulence in the wind was historically accounted
for in the thin airfoil model by considering only vertical wind gusts acting upon
the thin airfoil with a zero incidence, that is by superimposing to the mean wind
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flow only a vertical (i.e., orthogonal to the mean wind direction) turbulent wind-
speed component v, herein assumed positive if downwards. In detail, by assuming
v � U to be fully correlated along the airfoil span (namely, strip assumption)
and by considering the wing entering a sinusoidal gust v(x, s) = ṽeik(s−2x/B),
the aerodynamic forces acting upon the airfoil reduce to the following lift force
acting at x = B/4 [7]:

L(k, s) = −PoBCL/α
ṽ

U
Θ(k)eiks (17)

where Θ(k) is the frequency-dependent Sears’ function [5]

Θ(k) = [J0(k)− iJ1(k)]C(k) + iJ1(k) = FS(k) + iGS(k) (18)

J·(k) being Bessel functions of the first kind, and FS(k) and GS(k) indicating the
real and imaginary parts of Θ(k), respectively.

The case of the thin airfoil moving with speed U and αo = 0, and entering
an arbitrary vertical wind gust can be addressed starting from the case of a sharp-
edged gust v(x, t) = H(t − x/U)ṽ. In this case, the resulting lift force was
determined by Küssner [3] as:

L(s) = −PoBCL/α ψ(s)
ṽ

U
(19)

where ψ(s) is the Küssner’s indicial function (with ψ(s) = 0 for s ≤ 0 and ψ(s)
tending to 1 for s approaching infinity, Fig. 2), describing the transient evolution
of the lift force up to the static value associated to an effective angle of attack
α̂ = −ṽ/U . If an arbitrary function v(s) is considered for s ≥ 0 as the gust
velocity encountered by the airfoil’s leading edge (x = −B/2) at the instant
t = sB/(2U), Duhamel’s linear superposition gives, as in Eqs. (9) and (11), the
following expression for the unsteady lift:

L(s) = −PoCL/αB
[
ψ(0)

v(s)

U
+

∫ s

0
ψ′(τ)

v(s− τ)

U
dτ

]
= Po

∫ s

−∞
Iv(s− τ)

v(τ)

U
dτ (20)

where Iv(s) is the thin-airfoil’s impulse response function corresponding to v(s) =
δ(s)U , and equal to

Iv(s) = −CL/αB[ψ(0)δ(s) + ψ′(s)] (21)

Even in the case of aerodynamic forces induced by vertical wind gusts, a strong
duality between time-domain and frequency-domain descriptions can be stated,
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similarly to the case of Theodorsen and Wagner functions. In detail, Fourier syn-
thesis enables to show the strong duality between Sears and Küssner functions

ψ(s) =
1

2πi

∫ ∞
−∞

Θ(k)

k
eiks dk (22)

Θ(k) = ik
∫ ∞
0

ψ(τ)e−ikτ dτ = ψ(0) + ψ′(k) = − Iv(k)

CL/α̂B
(23)

and thereby to express the power spectral density of L(s) as [32]:

SL(k) = (PoBCL/α)2|χS(k)|2Sv(k)/U2 (24)

where |χS(k)|2 = Θ(k)Θ∗(k) = F2
S(k) + G2S(k) is the Sears’ aerodynamic ad-

mittance function and Sv(k) is the power spectral density of the gust function v(t).
A convenient empirical approximation of the function |χS(k)|2 can be put in the
form |χS(k)|2 = (1 + λk)−1, with λ = 5.0 (in agreement with Scanlan [15]) or
λ = 2π (following the statistical approach adopted by Liepmann [39]). Accord-
ingly, when gust frequency is significantly greater than zero, the gust-induced
fluctuating lift results to be significantly smaller than the quasi-steady value, the
latter attained for k approaching to zero.

By replacing φ(s) by ψ(s) in Eq. (15), also the Küssner’s function can be
approximated through exponential filters. An excellent approximation is obtained
by considering n = 2, ao = 1, a1 = a2 = 0.500, b1 = 1.000, and b2 = 0.130,
[7, 32]. Accordingly, real and imaginary parts of the Sears’ function Θ(k) can be
evaluated by employing a rational approximation as in Eqs. (16).

It is worth remarking that Eq. (18) allows to state a theoretical relationship be-
tween buffeting and self-excited loads acting upon the thin airfoil, that is between
Sears and Theodorsen circulatory functions (in the frequency domain), as well as
between Küssner and Wagner functions (in the time domain). In detail, Eq. (18)
clearly suggests that, even in the ideal case under investigation, indicial responses
to a step-wise vertical gust (namely, ψ) and to a step-wise change in the angle of
attack (namely, φ) are formally different. In other words, and as confirmed by an-
alyzing curves in Fig. 2, although the asymptotic behavior associated to the steady
limit is the same in both cases (when the effective angle of attack is the same), the
transient local flow patterns arising around the profile as induced by a wind gust
or by an airfoil motion are significantly different.

4 QUASI-STEADY WIND LOAD MODEL
In some cases, wind loads acting upon on a cross-section S can be effectively
represented by means of a quasi-steady model. Accordingly, forces induced by
a turbulent approaching wind flow are assumed at each instant to be equal to the
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steady loads corresponding to both the structural configuration and the effective
angle of attack in a representative point at that instant, resulting independent from
any memory effects related to motion and wind fluctuations at earlier times [40].
Quasi-steady approach thereby holds if [11, 37, 40–42]:

• The characteristic dimension of S is small when compared with the turbu-
lence length scales in the approaching flow, thereby the turbulent fluctua-
tions can be assumed as perfectly correlated around S and dependent only
on time and not on space;
• Signature turbulence (associated to wake-induced effects) has a harmonic

content with a characteristic frequency range higher than the undisturbed
turbulence. Accordingly, undisturbed and signature turbulence can be con-
sidered uncorrelated, and the corresponding wind-force contributions can
be assumed as independent and thereby linearly superimposable; such an
assumption corresponds to assume that the cross-section S is characterized
by high values of the dimensionless Strouhal number St = Bωw/(2πU),
ωw being the circular frequency of full cycles of vortex shedding in the
wake of S [16];
• The section S moves from a reference configuration slowly and with small

oscillation amplitudes into the approaching wind flow (namely, quasi-static
assumption), and the fluctuating wind components are small with respect to
the mean wind speed (namely, quasi-steady assumption).

Addressing the notation introduced in Fig. 3 and assuming for the sake of sim-
plicity a = 0 (see Fig. 1), So denotes the reference section configuration and
S the actual one, the latter obtained as a rigid transformation of So. Moreover,
Fo ≡ (O, xo, yo) is a fixed Cartesian frame centered in the centroid O of So,
(xo,yo) being principal inertial axes for So. Let Mo ≡ (Ô, x̂o, ŷo) be a local
Cartesian frame, rigidly moving with S (such that Fo ≡ Mo when So ≡ S), and
Fw ≡ (O, x, y) a Cartesian frame whose axis x is aligned with the mean wind
direction, angled αo with respect to xo, and αo + α(t) with respect to x̂o, with
α(t) denoting the rotation of S with respect to So. The translation transforming
O in Ô is described by the time-dependent displacement functions p(t) and h(t)
along x (along-wind direction) and y (cross-wind direction) axes, respectively.

Let two reference points Pf and Pm be introduced, in order to describe lift and
drag forces (point Pf ), and the moment with respect to Ô (point Pm). In detail,
we assume (Pr − Ô) = B(βrx îo + βry ĵo), with r = f,m and (̂io, ĵo) the unit
vectors along the coordinate axes of Mo. These latter are such that

{i, j}T = R(αo + α) {̂io, ĵo}T , R(ϑ) =

[
cosϑ − sinϑ
sinϑ cosϑ

]
(25)
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Figure 3. Quasi-steady wind load model: notation

where (i, j) are the unit vectors along the coordinate axes of Fw, and R(ϑ) is the
in-plane orthonormal rotation matrix corresponding to the angle ϑ. Accordingly,
at the reference points Pf and Pm the instantaneous angle of attack is:

α̂r = αo + α(t)− θr(t), θr(t) = arctan

[
Ûr · j
Ûr · i

]
(26)

θr denoting the angle between the relative wind speed Ûr at Pr (with r = f,m)
and the mean wind direction i, with Ûr being expressed in Fw as:

Ûr =

{
U + u− ṗ
v − ḣ

}
−B α̇ R(αo + α)br, br = {−βry, βrx}T (27)

where u(t) and v(t) are the time-dependent turbulent wind components along axes
x and y, respectively.

With respect to the moving Cartesian frame Mw ≡ (Ô, x̂, ŷ) (such that Fw ≡
Mw when So ≡ S), whose axis x̂ is aligned with Ûr, the following aerodynamic
forces can be introduced:

D̂ = PfBCD(α̂f ), L̂ = PfBCL(α̂f ), M̂ = PmB2CM (α̂m) (28)

where D̂ acts along x̂, L̂ along ŷ, M̂ is reduced with respect to Ô, and Pr =
ρ‖Ûr‖2/2 is the instantaneous kinetic pressure in Pr (with r = f,m).
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Introducing the vector of the generalized forces F(t) = {D, L, M}T with
components referred to Fw, it results in:

F(t) =

[
R(θf ) 0
0 1

]
D̂(α̂f )

L̂(α̂f )

M̂(α̂m)

 (29)

By enforcing quasi-static and quasi-steady assumptions, that is |g/U | � 1 and
|q/B| � 1 with g = u, v,ṗ, ḣ, α̇B and q = p, h, αB, the nonlinear relationship
in Eq. (29) can be linearized around the reference configuration So:

F(t) ∼= Fo(αo, t) = Fs(αo) + Fob(αo, t) + Foa(αo, t) (30)

where the dependency on the steady angle of attack αo has been emphasized and,
by indicating Cog = Cg(αo) and Cg/α̂ = ∂Cg/∂α̂|α̂=αo (with g = D,L,M ),
where:

• Fs(αo) is a constant vector collecting steady mean forces:

Fs(αo) = PoB {CoD CoL BCoM}T (31)

• Fob(αo, t) denotes the quasi-steady buffeting contribution, linearly depend-
ing on the turbulence velocity vector V(t) = {u(t), v(t)}T and expressed
via the constant 3× 2 buffeting matrix Cb(αo):

Fob(αo, t) = Cob(αo)V(t)

=
PoB
U

 2CoD −(CD/α̂ + CoL)

2CoL −(CL/α̂ − CoD)

2BCoM −BCM/α̂

{ u(t)
v(t)

}
(32)

• Foa(αo, t) describes the quasi-static self-excited or aeroelastic forces, ex-
pressed in terms of the cross-section’s generalized displacement (q) and
velocity (q̇) vectors, and in terms of the constant 3× 3 aerodynamic damp-
ing and stiffness matrixes, Coa and Ko

a, respectively:

Foa(αo, t) = −Coa(αo)q̇(t)−Ko
a(αo)q(t)

= − [Cob c] q̇(t) + Po

 0 0 CD/α̂
0 0 CL/α̂
0 0 BCM/α̂

q(t) (33)

where q(t) = {p(t), h(t), Bα(t)}T and where the vector c is component-
wise defined as

[c]i = [Cob R(αo)br]i (34)

with r = f for i = 1, 2, and r = m for i = 3.
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If the steady angle of attack αo is assumed to be small itself, then the linearized
relationships previously introduced may be rearranged substituting R(αo) in the
Eq. (34) with the 2 × 2 identity matrix and considering: Cog = Cg(0), Cg/α̂ =
∂Cg/∂α̂|α̂=0 with g = D,L,M , and Fs(αo) ∼= Fs(0) + Fs/α̂|α̂=0 αo.

A frequency domain representation of Eq. (30) can be easily derived as:

F
o
(αo,K) =Fs(αo) + Cob(αo)V(K)

− U

B
Coa(αo)q′(K)−Ko

a(αo)q(K) (35)

where, as it is customary in bridge analysis, the reduced frequencyK = Bω/U =
2k and the dimensionless time S = Ut/B = s/2, based on the cross-section
width B, are introduced. As a notation rule, from now on, f ′ = ḟB/U will de-
note the first derivative of f with respect to S.

In agreement with the previously-recalled quasi-steady assumptions, Eqs. (30)
and (35) should be completed by linearly superimposing contributions accounting
for wake-induced loads, generally depending on the Strouhal number of S. Sig-
nature effects are out of the aim of the present paper. Nevertheless, although in
the analysis of bridge buffeting/flutter problems signature effects are generally
not taken into account (e.g., [16, 17]), a wide review of well-posed models for
describing wake-induced contributions can be found in [16, 40, 43].

It is worth pointing out that, in the framework of the present linear description,
aeroelastic and buffeting loading contributions are not coupled each other and, as
a result, self-excited forces have to be considered independent from any turbulent
effects, and thereby referred to a laminar flow condition.

Time-domain quasi-steady formulation described by Eqs. (30) to (34) consis-
tently generalizes many quasi-steady approaches recently proposed (e.g., [17, 40–
42, 44–47]), which can be straight recovered by assuming specific reference points
Pf and Pm, and/or by disregarding some aerodynamic or geometric contributions.

In the limit of the quasi-steady approach, the choice of the reference points
Pf and Pm, that is of the parameters βrj (with r = f,m and j = x, y), is crucial
because they affect the contribution of α̇ to the effective angle of attack. Such pa-
rameters, as it is widely recognized in the specialized literature, should be properly
determined through dynamic experimental tests, and they could generally depend
on the steady angle of attack, i.e. βrj = βrj(αo). Different meanings to the role of
reference points, as well as different choices for Pf and Pm, can be found through
the literature. For instance, Diana et al. [48] considered only two parameters,
namely βfx and βmx, assuming that the reference points belong to the axis x̂o and
that the height of S is small, so that βfy = βmy = 0. Salvatori and Borri [49]
proposed a generalization of the previous approach, considering three parameters
similar to βrj , one for each component of Foa. Nevertheless, this model is not
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consistently and rationally derived, but it is only postulated as an extension of
other quasi-steady formulations [16, 40]. Other authors (e.g., [19, 42, 50, 51]),
similarly to the case of the thin airfoil, used only one reference point Pf = Pm
belonging to the axis x̂o (i.e., β = βfx = βmx and βfy = βmy = 0). Many au-
thors (e.g., [44, 52–54]) considered, as a unique reference point, the centroid of S
(i.e., β = 0); Borri and Costa [55] employed the leading edge of the bridge cross-
section (i.e., β = −1/2), and Chen and Kareem [56] performed some calculations
considering the three-quarter chord point like in thin airfoil (i.e., β = 1/4). It is
worth remarking that these assumptions have not to be considered in an absolute
sense but, depending on the bluffness degree of S, they should be experimentally
verified case by case.

As a matter of fact, a consistent and general adaptation of the quasi-steady
approach to a general dynamics is simply not possible, and quasi-steady formu-
lation remains strictly valid only as a limit behavior, achievable when a constant
value in time of the angle of attack can be supposed, that is when it is theoret-
ically possible that flow reaches a steady state. This condition may occur only
when time-dependent functions ṗ(t), ḣ(t) and α(t) are constant.

5 UNSTEADY MODELS FOR LONG-SPAN BRIDGES
Quasi-steady and quasi-static assumptions are not generally satisfied when typical
wind-bridge interaction processes are addressed. As a matter of fact, bridge deck
sections are usually characterized by a very elongated shape along the mean wind
direction and, as a consequence, the characteristic chord-size of the section can
not be considered as small if compared with the length scales of the turbulence
components [11, 37]. Therefore, turbulence field around S can not be consid-
ered as perfectly correlated, and effects of chord-wise correlation should be taken
into account. Moreover, since deck sections are not usually streamlined and they
are characterized by low values of the Strouhal number, the harmonic contents
involved in signature and undisturbed turbulence overlap, and the corresponding
load contributions, can not be considered as independent each other and simply
superposable. Furthermore, in the case of real bridge deck sections, flow memory
effects can not be generally neglected, leading to a significant phase shift between
self-excited (respectively, buffeting) forces and structural motions (respectively,
wind gusts). Accordingly, wind-induced loads can not be generally considered as
depending only on the instantaneous relative velocity between flow and structure,
and thereby wind loads arising upon deck sections of long-span bridges usually
require suitable unsteady descriptions. These latter are obtained mainly by ex-
tending the theoretical approach developed for the thin airfoil to the case of bluff
sections via semi-empirical techniques. Nevertheless, the limit behavior described
by the quasi-steady model should be recovered as a proof of physical consistence.
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5.1 Time-domain description
Preserving the assumption that buffeting and self-excited contributions can be lin-
early superimposed (see Eqs. (30)), a pure time-domain formulation is established
moving from the basic rationale that the history of both sectional motion and wind
gusts can be considered as a series of infinitesimal step-wise increments. There-
fore, the non-stationary evolution in time of wind loads due to such step-wise
increments is described by indicial functions (Wagner-like indicial functions for
self-excited forces, and Küssner-like for buffeting contributions), strictly depend-
ing on the steady part of the angle of attack αo. If a step-wise change in the angle
of attack induces, after a transient stage, a new steady state around S, such an
approach should be able to recover, as for the thin airfoil, the steady wind loads
as an asymptotic behavior.

Under the assumption of linear superposition of flow memory effects, the un-
steady wind loads acting upon S and induced by a general time history of small
motions and small turbulent gusts can be represented by Duhamel’s convolution
integrals as in Eqs. (9) and (20). Nevertheless, due to unsteady effects arising
from the bluffness character of bridge sections, the position of both the rear neu-
tral point and the aerodynamic center can not be identified in a closed-form the-
oretical way and as independent from the type of bridge motion and wind gust,
as it instead occurs for the thin airfoil. Accordingly, in order to overcome such
a drawback and in the framework of the postulated linear superposition, several
indicial responses are usually introduced, each of them associated to a specific
motion/gust direction and to a specific force component.

In agreement with some available indicial approaches [9, 19, 41, 49], buffeting
and self-excited unsteady loads can be respectively expressed as

Fb(αo, S) =

∫ S

−∞
Cb(αo, S − τ)V′(τ) dτ (36)

Fa(αo, S) =−
∫ S

−∞
Ca(αo, S − τ)q′′(τ) dτ −

∫ S

−∞
Ka(αo, S − τ)q′(τ) dτ

(37)

with

Cb =
PoB
U

 2CoD ψDu −(CD/α̂ + CoL)ψDv
2CoL ψLu −(CL/α̂ − CoD)ψLv

2BCoM ψMu −BCM/α̂ ψMv

 (38)

Ca = Po

 2CoD φDṗ −(CD/α̂ + CoL)φDḣ 0

2CoL φLṗ −(CL/α̂ − CoD)φLḣ 0

2BCoM φMṗ −BCM/α̂ φMḣ 0

 (39)
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Ka = −Po

 0 0 CD/α̂ φDα
0 0 CL/α̂ φLα
0 0 BCM/α̂ φMα

 (40)

ψrj(αo, S) and φrn(αo, S) (with r = D,L,M , j = u, v, and n = ṗ, ḣ, α) being
the Küssner-like and Wagner-like indicial functions, respectively.

It is worth pointing out that such a description of unsteady buffeting and aeroe-
lastic wind loads allows to consistently recover, as an asymptotic behavior, the
quasi-steady description recalled in Section 4, when dimensionless indicial re-
sponses tend to 1, in agreement with the normalization indications provided by
Scanlan [15]. In detail, by assuming step-wise changes g(S) = H(S)g̃, with
g = u, v, ṗ, ḣ, α, and g̃ a constant value, it results (with r = D,L,M , j = u, v
and n = ṗ, ḣ, α)

lim
S→+∞

Fb(S) = Fob , lim
S→+∞

Fa(S) = Foa

when lim
S→+∞

ψrj(S) = lim
S→+∞

φrn(S) = 1 (41)

If time-dependent wind loads acting upon S can be effectively described via the
quasi-steady approach, the following relationships hold, involving Wagner-like in-
dicial functions associated to the torsional degree-of-freedom (α) and coordinates
of the reference points Pr (with r = f,m, see Fig. 3 and Eq. (34)):

φDα(S) = [c]1δ(S)
U

PoCD/α̂B
+ 1

φLα(S) = [c]2δ(S)
U

PoCL/α̂B
+ 1 (42)

φMα(S) = [c]3δ(S)
U

PoCM/α̂B2
+ 1

Moreover, present time-domain formulation allows to recover the closed-form de-
scription for the thin airofoil. In detail, by enforcing CoD = CD/α̂ = p(S) =
u(S) = 0 and CL/α̂ = −4CM/α̂ = −2π, wind loads acting upon the thin air-
foil are straight described via the present formulation by expressing the indicial
responses in terms of Wagner and Küssner indicial functions, that is:

ψLv(S) = ψMv(S) = ψ(S)

φLḣ(S) = φ(S) + δ(S)/4

φMḣ(S) = φ(S) (43)

φLα(S) = φ(S) + φ′(S)/4 + δ(S)[φ(0) + 1]/4

φMα(S) = φLα(S)− δ(S)/2− δ′(S)/32
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Previous relationships generalize those proposed by Chen and Kareem [19], which
can be simply recovered by disregarding non-circulatory inertial terms related to
h′′ and α′′.

Unsteady wind loads can be also expressed, into the time domain, through
convolution integrals involving aerodynamic impulse response functions Irj(αo, S)
(with r = D,L,M and j = u, v, p, h, α) and the fluctuating wind velocity (buffet-
ing contributions) or displacement components (self-excited forces) [15, 51, 56]:

Fb(αo, S) =
Po
U

∫ S

−∞
Ib(αo, S − τ)V(τ) dτ (44)

Fa(αo, S) =
Po
B

∫ S

−∞
Ia(αo, S − τ)q(τ) dτ (45)

where Ib and Ia are the impulse-response matrices:

Ib(αo, S) =

 IDu IDv
ILu ILv
IMu IMv

 , Ia(αo, S) =

 IDp IDh IDα
ILp ILh ILα
IMp IMh IMα

 (46)

By comparing Eqs. (44) and (45) with Eqs. (36) and (37), and by omitting the
dependency on αo for the sake of compactness, it results

Ib(S) =
U

Po
[
Cb(0)δ(S) + C′b(S)

]
(47)

Ia(S) =− B

Po
[
Ca(0)δ′(S) + C′a(0)δ(S) + C′′a(S)

+Ka(0)δ(S) + K′a(S)
]

(48)

Starting from the Fung’s formulation [6] and in agreement with the remarks given
in [7], the indicial approach has been introduced for the first time in bridge anal-
ysis by Scanlan and co-workers [8], by considering only lift and moment contri-
butions. They described self-excited wind loads induced by heaving and pitching
motions of the girder by considering different indicial responses relevant to both
the effective angle of attack at the section mid-chord point (namely related to α
and h′) and the effective rate of change of the angle of attack (α′). Nevertheless,
following this formulation, no difference should appear in indicial response when
step-wise changes in h′ or in α are considered. Although such an approach can be
successfully applied in the case of almost streamlined profiles (such as real wings
or some modern bridge deck sections), it usually fails for bluff bodies; thereby
many authors have proposed to assume that the indicial responses associated to the
different downwash contributions have to be different [15, 57, 58]. Accordingly,
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disregarding any drag and horizontal effect, available time-domain formulations
are mostly based on two indicial functions for each generalized force. They are
combined by convolution with downwash terms described by the displacement
functions α(s) and h(s) [59, 60], or by α(s) and h′(s) [9, 13, 15, 19, 26, 61].
Therefore, downwash contributions related to the pitch rate α′(s) are usually not
explicitly included, despite of the thin airfoil theory, since indicial functions as-
sociated to α′ are often considered as redundant (e.g., [8, 15, 40]). Many indi-
cial representations in agreement with previous considerations can be found in
the specialized literature, including both self-excited drag force and the along-
wind deck’s displacement (e.g., [9, 19, 59]), as well as describing buffeting loads
(e.g., [13, 40]. Nevertheless, many authors considered different normalization
conditions with respect to Eqs. (36) and (40) and, since the scalar weights of the
indicial functions do not match the quasi-steady formulation, in these cases the
consistency asymptotic condition (41) is not satisfied.

Moreover, referring to the most popular time-domain descriptions of aeroelas-
tic wind loads on long-span bridges, inertial effects are usually neglected or they
are at most intended to be implicitly incorporated within the indicial response.
In fact, the adopted φ-like indicial functions are generally obtained by ratio-
nal approximation techniques from the experimentally-determined flutter deriva-
tives, thereby preventing to formally distinguish between circulatory and non-
circulatory terms. As a consequence, when inertial effects are not negligible,
indirectly-extracted indicial functions for bluff sections have no direct correspon-
dence with the Wagner’s one (that instead describes circulatory effects only), be-
cause they include inertial contributions related to the identification procedure
of the flutter derivatives. Such a consistency violation can be significant in the
description of the first transient stage of the aerodynamic response to step-wise
motions (i.e., for very small values of S) and tends to disappear for high values of
S (namely, when the response tends to be steady), inertial effects tending there to
vanish.

In order to overcome such a drawback, a new general time-domain descrip-
tion of self-excited wind loads on elongated bridge sections with a mildly bluff
character has been recently proposed by de Miranda et al. [27], and general-
ized in [62] by including lateral (i.e., along-wind) effects. In detail, moving from
the thin-airfoil rationale, pseudo-circulatory and pseudo-non-circulatory contri-
butions are superimposed. The first ones are assumed to be representative of
memory-dependent downwash-related effects, whereas the latter are regarded as
independent from the section motion history. Pseudo-non-circulatory contribu-
tions are described as linearly depending on components of q′ and q′′, whereas
pseudo-circulatory terms are associated to generalized downwash functions de-
pending on components of q and q′. Such a description has been proven to be
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fully feasible. In fact, the identification (via suitable numerical or experimental
techniques) of the aerodynamic response to few quasi-step motions (namely, one
for each degree of freedom) and to an angular harmonic motion, combined with
consistency conditions arising from the asymptotic behavior in quasi-stationary
regimes, allows to give an effective estimate of the complete set of parameters
needed to apply the referred loading model [27].

5.2 Frequency-domain description
Buffeting wind loads are conventionally expressed in the frequency domain by
correcting the quasi-steady formulation through frequency-dependent functions,
accounting for the lack of pressure correlation around S. In particular, Fourier
transform of buffeting loads can be expressed in the form:

Fb(αo,K) = C̃b(αo,K)V(K)

=
PoB
U

 2CoD χDu −(CD/α̂ + CoL)χDv
2CoL χLu −(CL/α̂ − CoD)χLv

2BCoM χMu −BCM/α̂ χMv

V(K) (49)

where complex functions χrj(αo,K) (with r = D,L,M and j = u, v) have the
meaning of aerodynamic transfer operators between fluctuating wind velocities
and buffeting sectional forces. These functions generally depend on the steady
part of the angle of attack and on the reduced frequencyK based on the fluctuation
frequency of the wind gusts. The square moduli of such functions are called
aerodynamic admittance functions, and they describe the frequency-dependent
variation of the force level with respect to the steady state. In the limit of the
quasi-steady response, the following relationships hold

lim
K→0+

C̃b(αo,K) = Cob(αo), lim
K→0+

χrj(αo,K) = 1 (50)

Fourier transforms of Eqs. (36) and (44) lead to the following relationship among
time- and frequency-dependent functions describing buffeting unsteady loads:

C̃b(K) =
Po
U

Ib(K) = Cb(0) + C′b(K) (51)

or equivalently (with r = D,L,M and j = u, v)

χrj(K) = ψrj(0) + ψ′rj(K) = iK
∫ ∞
0

ψrj(S)e−iKSdS (52)

ψrj(S) =
1

2πi

∫ ∞
−∞

χrj(K)

K
eiKSdK (53)
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The comparison among Eqs. (22)-(23) and Eqs. (52)-(53) suggests that, in analogy
with the thin-airfoil theory and as highlighted in [107], aerodynamic admittance
functions χrj(K) in the frequency domain correspond to Sears-like complex func-
tions

Θrj(K) = χrj(K) = F (rj)
S + iG(rj)S (K) (54)

dual (in the sense of the Fourier transform) to indicial Küssner-like functions
ψrj(S) in the time domain.

The first attempt to incorporate in a quasi-steady formulation for bridge deck
sections the rationale introduced by Sears [5] for the thin airfoil, based on the in-
troduction of a frequency filter mapping turbulence components in the buffeting
wind loads, has been performed by Davenport [11]. By assuming wind gusts as
a stationary random process and under the strip assumption [38], Davenport de-
scribed (not accounting for signature turbulence effects) drag force, lift force and
torsional moment acting upon the deck cross-section by introducing five aerody-
namic admittance functions (one for the drag, and two for lift and moment), very
similar to Sears’ relationship. Such a formulation has been successively general-
ized by Scanlan [15, 17] by introducing two admittance functions for each loading
component, as in Eq. (49).

As far as self-excited forces are concerned, they are conventionally expressed
in the frequency domain as:

Fa(αo,K) = −C̃a(αo,K)q′(K)− K̃a(αo,K)q(K) (55)

with

C̃a(αo,K) = −Po

 KP ∗1 KP ∗5 KP ∗2
KH∗5 KH∗1 KH∗2
BKA∗5 BKA∗1 BKA∗2

 (56)

K̃a(αo,K) = −Po

 K2P ∗4 K2P ∗6 K2P ∗3
K2H∗6 K2H∗4 K2H∗3
BK2A∗6 BK2A∗4 BK2A∗3

 (57)

where A∗j (αo,K), H∗j (αo,K) and P ∗j (αo,K) (with j = 1, ..., 6) are the so called
aeroelastic or flutter derivatives. These latter are dimensionless real functions de-
pending on the section shape, on the steady part of the angle of attack, and on the
reduced frequency K of oscillation. From Eq. (55) it clearly appears that flutter
derivatives can be regarded as frequency filters mapping the motion of the deck
section S into the self-excited forces. In the limit of the quasi-steady response,
the following relationships hold

lim
K→0+

C̃a(αo,K) = Coa(αo), lim
K→0+

K̃a(αo,K) = Ko
a(αo) (58)
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It is worth pointing out that, assuming flutter derivatives as known frequency-de-
pendent functions, the limit condition (58)1 gives a straight indication on the con-
sistent position of reference points Pr (with r = f,m) introduced in the quasi-
steady approach (see Fig. 3 and Eq. (34)). Moreover, it is simple to prove that
the present frequency-domain formulation allows to recover the closed-form de-
scription for the thin airfoil, by expressing flutter derivatives not associated to
the along-wind motion in terms of the complex Theodorsen circulatory function
[16, 27, 63].

Starting from the Theodorsen formulation and following an heuristic approach,
the concept of flutter derivatives was firstly introduced by Scanlan and Tomko
[12], by defining the self-excited lift and moment loads as functions of six (namely,
A∗j , H

∗
j , with j = 1, .., 3) flutter derivatives, related to cross-wind and torsional

deck motions. With increasing spans, the influence of self-excited contributions
associated with the motion in the along-wind direction has become not longer
negligible [14, 64, 65] and in many recent studies the complete set of the 18 flut-
ter derivatives has been generally considered (e.g., [21, 22, 66–70]).

In the specialized literature, other representations of the aeroelastic forces can
be found, less popular than the Scanlan’s one. For instance, mention can be made
to the ONERA representation (often referred to as Küssner representation) [71]
and to the description proposed by Zasso [72]. Nevertheless, such alternative rep-
resentations can be simply converted to the classical Scanlan’s one.

Fourier transforms of Eqs. (37), (44) and (45) lead to the following relation-
ships among time- and frequency-dependent functions describing aeroelastic un-
steady loads:

Po
B

Ia(αo,K) = −iKC̃a(αo,K)− K̃a(αo,K)

= −iK
[
Ca(0) + C′a(K)

]
−
[
Ka(0) + K′a(K)

]
(59)

The comparison among Eqs. (12), (13) and (59) suggests that, in analogy with the
thin airfoil and as also adopted in [9, 27], flutter derivatives and indicial Wagner-
like functions can be related each other by introducing Theodorsen-like complex
functions Crj(K) (with r = D,L,M and j = ṗ, ḣ, α), such that

Crj(K) = F (rj)
T (K) + iG(rj)T (K)

= iK
∫ ∞
0

φrj(S) e−iKS dS = φrj(0) + φ′rj(K) (60)

φrj(S) =
1

2πi

∫ ∞
−∞

Crj(K)

K
eiKS dK =

2

π

∫ ∞
0

F (rj)
T

K
sin (KS) dK (61)

Accordingly, since Eq. (60), frequency-dependent self-excited forces can be recast
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by considering the following relationship (see Eq. (59)):

Po
B

Ia(αo,K) = −iKC̃a(K)− K̃a(K)

= Po

 −iK2CoDCDṗ iK(CD/α̂ + CoL)CDḣ CD/α̂CDα
−iK2CoLCLṗ iK(CL/α̂ − CoD)CLḣ CL/α̂CLα
−iK2BCoMCMṗ iKBCM/α̂CMḣ BCM/α̂CMα

 (62)

Therefore, by combining Eqs. (56) and (57) with Eqs. (60) and (62) it is possible
to establish a strong duality between time-domain and frequency-domain descrip-
tions of motion-related wind loads on long-span bridges, by expressing flutter
derivatives in terms of real and imaginary parts of the Theodorsen-like complex
functions Crj(K). Following such an approach and employing the novel time-
domain description proposed by de Miranda et al. [27], and generalized in [62],
pseudo-circulatory and pseudo-non-circulatory contributions can be clearly dis-
tinguished within the framework of the classical Scanlan’s formulation. In this
case, when the thin airfoil is addressed, Theodorsen-like circulatory functions
consistently reduce to

CLα(K) = CMα(K) = CLḣ(K) = CMḣ(K) = C(K)

Crṗ(K) = CDḣ(K) = CDα(K) = 0 (63)

and the non-trivial flutter derivatives in Eqs. (56) and (57) reduce to

H∗1 = −2π
FT
K

(64)

H∗2 = −π
[

1

2K
+
FT
K

(
1

2
− a
)

+ 2
GT
K2

]
(65)

H∗3 = −π
[
a

4
+ 2
FT
K2
− GT
K

(
1

2
− a
)]

(66)

H∗4 = π

[
1

2
+ 2
GT
K

]
(67)

A∗1 = π

(
1

2
+ a

) FT
K

(68)

A∗2 = π

[
− 1

4K

(
1

2
− a
)

+
FT
2K

(
1

4
− a2

)
+
GT
K2

(
1

2
+ a

)]
(69)

A∗3 = π

[
1

8

(
1

8
+ a2

)
+
FT
K2

(
1

2
+ a

)
− GT

2K

(
1

4
− a2

)]
(70)

A∗4 = −π
[
a

4
+
GT
K

(
1

2
+ a

)]
(71)
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recovering, for a = 0, the results proposed by Scanlan in [16].

5.3 Identification of aerodynamic force parameters
The assessment of unsteady aerodynamic forces in the time domain requires the
identification of aerodynamic impulse or indicial response functions. In order
to directly identify indicial responses of bridge decks, allowing also the indirect
extraction of flutter derivatives, only few successful experimental techniques can
be found in literature (e.g., [28, 29, 73]), mainly due to the drawbacks associ-
ated with the controllability of a suitable quasi-step description, as well as with
the experimental replicability of an exact step function. As an alternative and/or
support to the experimental methodologies, different computational approaches
have been recently proposed, aiming to furnish direct estimates of aerodynamic
indicial responses. Referring to two-dimensional grid-based methods, two dif-
ferent strategies are generally employed. The first considers a motionless solid
region immersed in the fluid domain, simulating the step-response by suitable
flow boundary conditions [57, 74–76]. The second directly simulates the motion
of the solid domain within the flow, prescribing a smoothed-ramp motion of the
section during a finite time in order to overcome the computational problems in-
volved by the exact step-wise condition [27, 34, 77–79]. Nevertheless, all the
adopted numerical strategies have been proven to be satisfactory only in the case
of streamlined or at most mildly bluff sections. Accordingly, the direct evaluation
of indicial aerodynamic response for bluff bridge sections remains a crucial and
difficult task that has to be retained still an open and challenging issue.

On the contrary, techniques for identifying frequency-domain force parame-
ters, such as flutter derivatives and admittance functions, can be considered more
effective, and a large data set based on many sectional geometries is available,
especially as regards flutter derivatives.

In particular, although promising results have been obtained by means of com-
putational fluid dynamics [34, 80–85], flutter derivatives are generally extracted
by experimental wind tunnel tests [12, 64, 86–93], mainly based on forced or
free vibration methods. Similarly, the identification of the buffeting actions in-
duced by controlled wind gusts is employed to extract aerodynamic admittance
functions. In detail, aiming to include the influence of the signature turbulence
characteristics, as well as to separately identify aerodynamic admittance func-
tions associated to different wind force components, many experimental and nu-
merical investigations have been carried out in the last years [37, 94–102]. On
the other hand, since the accurate evaluation of admittance functions consistently
extracted within the framework of a given model formulation, may be difficult
to achieve, the Sears’s function is often employed for studying the buffeting re-
sponse of long-span bridges [61, 103–105]. Nevertheless, the use of the Sears’s
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function is strictly reasonable for bridges with a cross-section very streamlined,
its use for bluffer deck sections being not justified [37] and generally inducing an
underestimation of the bridge buffeting response [105].

Starting from the direct knowledge of frequency-dependent parameters, aero-
dynamic functions in time-domain descriptions could be estimated following an
indirect way, by recurring to the strong duality (via the Fourier synthesis) be-
tween time-domain and frequency-domain descriptions. Nevertheless, both flut-
ter derivatives and admittance functions are normally known only at discrete val-
ues of the reduced frequency K. Accordingly, the direct use of the aforemen-
tioned relationships to quantify impulse and indicial response functions by means
of inverse Fourier transforms is not effective. Therefore, approximate continu-
ous functions are required for describing frequency-dependent force parameters
allowing to identify suitable time-domain responses. In order to overcome such
a drawback and by recalling Eqs. (54) and (60), rational approximations as in
Eqs. (15) and (16) are usually employed, for both self-excited contributions (e.g.,
[8, 9, 34, 35, 51, 56]) and buffeting ones (e.g., [19, 35, 106]). A suitable choice of
parameters n, aj , bj is needed, and the identification of model parameters is usu-
ally performed through the least squares method, by minimizing error functions
between the values of the unsteady coefficients calculated by the experimentally
(or numerically) evaluated flutter derivatives and their expressions in terms of the
indicial coefficients [8, 19].

5.4 Approximate relationships among force parameters
As already observed in the ideal case of the thin airfoil, fluctuating gust compo-
nents and motion components of the section give rise to different physical phe-
nomena and local pressure distributions. Nevertheless Eq. (18), relating Sears
and Theodorsen functions, allows to state the possible existence of closed-form
relationships between self-excited force parameters (namely, flutter derivatives
and Wagner-like indicial functions) and buffeting ones (aerodynamic admittance
functions and Küssner-like indicial functions). Therefore, at least within the limits
of a linearized approach and for sections with a reduced bluffness degree, simi-
lar inter-relations can be expected in analogy with the thin airfoil. Accordingly,
starting from the idea that the integral measures of the aerodynamic forces could
exhibit no great differences when gust components u and v are respectively sub-
stituted by section velocities−ṗ and−ḣ (since the same relative flow conditions),
many authors postulated phenomenological relationships between buffeting and
self-excited forces (e.g., [32, 33, 42, 107]).

In time-domain approaches this occurrence leads to the use of the same in-
dicial functions for both self-excited and buffeting loads (namely, φjṗ = ψju
and φjḣ = ψjv with j = D,L,M ), as well as such an assumption allows to
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postulate inter-relations among flutter derivatives and aerodynamic admittance
functions in the frequency-domain description [42]. In detail, by assuming that
aeroelastic forces induced by harmonic motions p and h are equal to buffeting
contributions associated to turbulent velocities u(t) = −ṗ(t) = −iωp(t) and
v(t) = −ḣ(t) = −iωh(t), respectively, it is possible to prove that the following
relationships hold:

2CoDχDu = −K(P ∗1 − iP ∗4 ), (CD/α̂ + CoL)χDv = K(P ∗5 − iP ∗6 )

2CoLχLu = −K(H∗5 − iH∗6 ), (CL/α̂ − CoD)χLv = K(H∗1 − iH∗4 ) (72)

2CoMχMu = −K(A∗5 − iA∗6), CM/α̂χMv = K(A∗1 − iA∗4)

It is simple to highlight, by employing Eqs. (32), (33), (50) and (58), that relation-
ships (72) are fully consistent in the framework of the quasi-steady assumption.
In the case of lack of experimental measurements of the aerodynamic admittance
functions and within the aforementioned limits, Eqs. (72) can be used for an an-
alytical derivation of the complete set of functions χrj from the measured flutter
derivatives. Starting from experimental observations, Scanlan [15] firstly intro-
duced some relationships among aerodynamic admittance functions and flutter
derivatives, later generalized in [17, 52]. Since different force conventions, Scan-
lan’s inter-relations are in partial agreement with Eqs. (72). Similar relationships
have been also discussed in [19], but they are not consistent with the quasi-steady
limit behavior herein proposed.

Since flutter derivatives should model self-excited contributions not coupled
with buffeting terms and referred to laminar incoming flow, the aerodynamic ad-
mittance functions obtained via Eqs. (72) take into account only a certain amount
of signature effects, but they do not include the lack of correlation of turbulence
components around the section. Scanlan [17, 32] suggested to weight the admit-
tance functions evaluated via flutter derivatives by a function resulting from the
integration of the coherence function associated to turbulence components along
the contour of the deck section (chord-wise admittance function).

Postulating that flow patterns induced by a bridge section undergoing har-
monic oscillations in cross-wind and torsional directions are similar, approximate
inter-relations among flutter derivatives can be also introduced. Therefore, by
assuming ḣ(t) = iωh(t) = Uα(t) and by observing that self-excited force com-
ponents associated to a torsional motion α are angularly shifted by α with respect
to the ones induced by a vertical motion h, the following relationships hold in the
framework of a linearized approximation:

KP ∗5 = K2P ∗3 − CoL, P ∗6 = −KP ∗2
KH∗1 = K2H∗3 + CoD, H∗4 = −KH∗2 (73)

A∗1 = KA∗3, A∗4 = −KA∗2
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Also in this case it is simple to prove, by employing Eqs. (33) and (58), that re-
lationships (73) are fully consistent in the framework of the quasi-steady assump-
tion. Matsumoto [89], starting from experimental results on rectangular cylinders,
proposed for H∗j and A∗j relationships similar to those reported in Eqs. (73), but
not accounting for static coefficient CoD and then lacking for consistency with
respect to the quasi-steady limit behavior. Scanlan et al. [63], postulating the
analogy between the deck sections and the thin airfoil, introduced similar rela-
tionships for A∗j and H∗j that recover the herein reported results in the limit of
small values of the reduced frequency.

6 SOME UNCONVENTIONAL EFFECTS
An accurate response analysis of wind-bridge interaction, mainly when long-span
and highly flexible structures are addressed, should take into account the three-di-
mensional character of the flow acting on the structure, as well as aerodynamic
nonlinear coupling effects.

All the previously-stated considerations are based on the main assumption that
the incident mean wind is at a right angle to the longitudinal axis of the bridge
deck. Nevertheless, this may not always be the case when the bridge is located
in a complex and heterogeneous topography or in the case of extreme wind con-
ditions. Accordingly, effects of yaw winds may need to be included in bridge
design, as well as they should be also taken into serious consideration for long-
span bridges during their construction stages [108, 109]. A classical approach
aiming to include skew winds in bridge buffeting analysis is essentially based on
the decomposition approach (the so-called cosine and sine rules). In other words,
the mean yaw wind is decomposed into two components: one is normal and the
other parallel to the bridge span. The contribution of the parallel mean wind com-
ponent is then separately analyzed from that of the normal mean wind component
[108, 110]. Nevertheless, such an approach reveals some difficulties in its applica-
tion, mainly related to the consistent definition of the turbulence wind decompo-
sition with respect to the bridge axis, as well as to the evaluation of the buffeting
response due to parallel component and its composition with the orthogonal-based
one. As wind tunnel tests reveal, the decomposition approach usually produces,
especially for high turbulent winds, an underestimation of the bridge buffeting
response under yaw wind [111], as well as it is generally inapplicable to the esti-
mation of flutter critical wind speed [112]. In particular, yaw wind effects could
reduce the values of critical wind speed inducing flutter onset. In order to over-
come such drawbacks, alternative formulations [113, 114], as well as numerical
approaches [117] and experimental procedures [112, 115, 116] allowing to treat
the three-dimensional wind field without any decomposition, have been recently
proposed.
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The three-dimensional character of the flow around the bridge deck is also as-
sociated with the loss of span-wise [1, 118, 119] and chord-wise [120–122] corre-
lation of the wind-induced forces. In other terms, due to the turbulent character of
the flow and to its not uniform distribution on the bridge deck, aerodynamic forces
are generally not perfectly correlated both along the bridge axis and section-chord
direction. As it is customary in bridge analysis, span-wise and chord-wise corre-
lation are usually treated as independent. The chord-wise correlation is directly
taken into account by means of the aerodynamic admittance functions, as previ-
ously recalled, and in the linearized framework it affects only buffeting contri-
butions and does not depend on the modal structural response. The span-wise
correlation, instead, may affect both self-excited and buffeting contributions, and
generally it can be strongly dependent on modal shape and amplitude characteriz-
ing the bridge response.

Although self-excited forces are commonly assumed to be fully correlated
along the span-wise direction, Scanlan [123] showed that span-wise effects on
flutter derivatives may arise from modal response of the bridge and from turbulent
character of the approaching flow (due to both undisturbed and signature effects).
Moreover, he noted that a loss of span-wise correlation for self-excited forces gen-
erally induced a stabilization in the single-mode torsional flutter. Nevertheless,
although such a stabilizing effect on the single-mode torsional flutter, it is not ob-
vious that same effect applies to multimode coupled flutter cases. In agreement
with [124] and by assuming that flutter derivatives reduce in coherence through
an exponential law, the uniform span-wise distribution of a given flutter derivative
D∗i to be employed within a fully correlated analysis framework results in:

D∗i (K) =

√∫ 1

0

∫ 1

0
D∗i (αoA)D∗i (αoB) Φ(ζA)Φ(ζB) e−c|ζA−ζB | dζA dζB (74)

where ζP = zP /` is the dimensionless span coordinate (with P = A,B), αoP =
αo(ζP ), and Φ(ζ) is the bridge deck modal shape in consideration, ` being the
span length, z the along-the-span coordinate and c a coherence coefficient, exper-
imentally valued. It is worth observing that, apart from coherence effects, flutter
derivatives may be variable along the deck axis because of the variability of the
steady angle of attack αo with z [21]. Moreover, in order to account in the lin-
earized framework for a certain amount of coupling between approaching turbu-
lence and self-excited wind forces, Scanlan proposed to evaluate flutter derivatives
considering experimental tests in turbulent flow regimes [16].

As far as the buffeting forces are concerned, a common choice is based on the
assumption that they have the same span-wise correlation as the incoming wind
fluctuations [19]. Nevertheless, this assumption is not completely verified by ex-
perimental tests, which have highlighted that, due to the flow dynamics in the
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separated flow region [125], buffeting contributions may have higher span-wise
correlation than the incident wind fluctuations. In order to account for span-wise
correlation of buffeting forces, and referring to the formulation proposed in [106],
the linearized buffeting forces acting on a motionless element of the bridge deck
with length ` and corresponding to arbitrary wind fluctuations can be expressed in
the time domain by a double convolution integral:

Fb(αo, S)` =
Po`
U

∫ S

−∞

∫ τ2

−∞
IJb(αo, S − τ2, τ2 − τ1)V(τ1) dτ1 dτ2 (75)

with

IJb(αo, S1, S2) =

 JDu(S1) IDu(S2) JDv(S1) IDv(S2)
JLu(S1) ILu(S2) JLv(S1) ILv(S2)
JMu(S1) IMu(S2) JMv(S1) IMv(S2)

 (76)

where the vector V(S) collects the wind fluctuations at the center of the deck
element, Ijr are the aerodynamic impulse functions defined as in Eqs. (46), and
Jjr are impulse functions representing the spatial correlation characteristics (with
j = D,L,M and r = u, v). Accordingly, the frequency description of buffeting
loads can be put in the form:

Fb(αo,K)` = `C̃J
b(αo,K)V(K)

=
Po`B
U

 2CoD χDuJDu −(CD/α̂ + CoL)χDvJDv
2CoL χLuJLu −(CL/α̂ − CoD)χLvJLv

2BCoM χMuJMu −BCM/α̂ χMvJMv

V(K) (77)

where J jr(K) (with j = D,L,M and r = u, v) are the Fourier transforms of
time-dependent functions Jjr(S), and are usually referred to as joint acceptance
functions, given by [19]

|J jr(K)|2 =

∫ 1

0

∫ 1

0
cohjr(ζA, ζB,K) dζA dζB (78)

cohjr being the frequency-dependent span-wise coherence function associated to
the aerodynamic force j and to the wind fluctuation r [16]. Following [11, 95],
position (78) can be generalized in order to account for a certain amount of cou-
pling between buffeting contributions and modal bridge response, by defining the
joint acceptance functions as

|J jr(K)|2 =

∫ 1

0

∫ 1

0
cohjr(ζA, ζB,K) Φ(ζA) Φ(ζB) dζA dζB (79)
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As for other time-domain parameters, techniques for direct determination of im-
pulse functions Jjr can be considered to be as not well established yet, whereas
experimental approaches for evaluating frequency-dependent span-wise coher-
ence have been extensively developed. Therefore, these impulse functions in time
domain can be quantified through their dual relationships in frequency domain,
usually treated via rational approximations.

Remarkable unconventional effects, that should be taken into account in order
to provide an accurate prevision of the bridge dynamical response to wind actions,
but herein only cited for the sake of compactness, are related to the aerodynamic
influence of bridge-section details (such as median dividers, edge safety barriers
or parapets) [126–128], towers and cables [129, 130], as well as to the presence
of trains and/or vehicles moving along the bridge deck [131, 132].

Finally, it is worth pointing out that often, in very flexible long-span bridges,
traditional linear aerodynamic force models can be ineffective. As previously dis-
cussed, linear models assume that the variation of the effective angle of attack
is small enough so that: aerodynamic forces can be linearized at the statically
deformed bridge configuration; the variation of the aerodynamic parameters is
negligible. Nevertheless, for typical bridge decks, such aerodynamic parameters
are generally high sensitive to the effective angle of incidence. As a consequence,
even for small levels of turbulence, the effective angle of incidence due to the
structural motion and wind fluctuations may largely vary, so that aerodynamic
nonlinearities can not be neglected [133–136]. In order to account for these ef-
fects, the main idea is based on the extension of the quasi-steady theory, not con-
sidering a linear approximation but including higher order terms [41]. Neverthe-
less, in order to accomplish simple and effective analysis, several approaches can
be found in specialized literature, based on the aerodynamic-response decompo-
sition associated to the frequency level [19, 48, 56]. Accordingly, the effective
angle of attack can be decomposed in low-frequency (large scale, including static
component) and high-frequency (small scale) components, corresponding to the
lower and higher frequencies than a cut-off one (e.g., the lowest natural bridge fre-
quency): α̂(t) = α̂low(t)+α̂high(t). Therefore, each nonlinear aerodynamic force
is separated in turn into low- and high-frequency components. The high-frequency
components are linearized around α̂low(t) and further separated into self-excited
and buffeting contributions, in agreement with the traditional linearized approach;
whereas the low-frequency contributions are modeled as a nonlinear function of
α̂low(t):

F(t) = F(α̂) ∼= F(α̂low) +
dF

dα̂

∣∣∣∣
α̂=α̂low

α̂high = Flow + Fhighb + Fhigha (80)

Accordingly, high-frequency contributions can be described in classical way (in
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frequency-domain by flutter derivatives and aerodynamic admittance functions, in
time-domain by indicial or impulse response functions), whereas the low-frequency
aerodynamic forces, since the small frequency values, can be suitably expressed
by quasi-steady theory by means of a nonlinear format as in Eq. (29).

7 CONCLUDING REMARKS
Recent advances in the modeling of aerodynamic forces on bridge decks in both
frequency domain and time domain have been reviewed, generalizing some com-
mon diffused inconsistencies and removing some not-well-posed assumptions.
Accordingly, a unified approach has been presented, proving theoretical consis-
tence with both the classical thin airfoil theory and the quasi-steady formulation
(the latter regarded as an asymptotic behavior). Analytical arguments based on
the Fourier synthesis have been employed to establish the strong duality between
time-domain and frequency-domain descriptions. Exact and approximate rela-
tionships, useful for practical applications, among aerodynamic parameters in-
volved in the description of static, self-excited and buffeting force components,
have been comprehensively discussed and compared with the actual state of the
art. Emphasis has been also given to a number of open topics and advanced strate-
gies in bridge aerodynamics, aiming to include some unconventional effects, often
neglected in wind-bridge interaction analyses.
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