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ABSTRACT: The dynamic response of structures to earthquake loading 

depends mainly on: the characteristics of the incident seismic waves; local site 

conditions, such as topographic irregularities and heterogeneity of the soils; the 

presence of stiff and heavy embedded foundations; the deformability of the soil 

supporting the structures. These phenomena can be relevant for bridges that 

usually have deep foundations and extent over considerable distances. In this 

paper the dynamic response of a bridge pier subjected to polarized shear waves 

is investigated. Different wave patterns are considered and the corresponding 

free-field ground motion is calculated with reference to a linear elastic 

halfspace. The pier is founded on a rigid caisson and soil-structure interaction is 

solved using the Winkler type model developed by Gerolymos and Gazetas. 

 

KEYWORDS: Inclined waves; kinematic interaction; inertial interaction.  

 

1 INTRODUCTION 
The influence of soil-structure interaction (SSI) in the dynamic response of 

structures with massive or deep foundation (such as bridges) has been studied 

by many authors in the past [1-4]. Nevertheless, most of the foregoing research 

has been restricted to certain aspects of the SSI, without pointing out the 

relative importance and interdependency of the most important aspects of the 

phenomenon. 
The seismic excitation experienced by structures is, definitely, a function of 

the earthquake source, travel paths of the seismic waves, local site conditions 

and, finally, soil-structure interaction [5-7]. 

The influence of local soil conditions on the nature of earthquake damage 

has been well established [8,9] and a number of techniques have been 

developed for ground response analysis. The major part of these methods deal 

with one-dimensional propagation of shear waves, considering both equivalent 

linear and nonlinear soil behavior. Nevertheless, one-dimensional analyses are 

useful for level or gently sloping sites, whereas for many other problems of 

interest the assumption of one-dimensional wave propagation is not acceptable 

as in the presence of irregular ground surface, heavy or stiff and embedded 
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structures.  

A large number of field observations demonstrate that buildings located on 

hilltops suffer much more intensive damage than those located at the base of 

hills. Instrumental evidence reveals that topography affects largely the 

amplitude and frequency content of ground motion. 

The importance of these effects has been shown to be rather sensitive to the 

characteristics of the incident wave field, such as wave type and propagation 

direction. Moreover, complex amplification and deamplification effects can 

cause significant differential motions along the ground surface. While the local 

variation of surface motion is usually negligible for commonly structures, this 

can be relevant for bridges that extend over considerable distances [10-12]. 

As a matter of fact, a first important feature of the dynamic soil-structure 

interaction (kinematic interaction) derives from the fact that the incident 

seismic waves are reflected and scattered by a relative rigid foundation and 

produce a base motion which is different from the motion occurring in the soil 

in the absence of the structure (the so-called free-field motion). The motion of 

the foundation may generally include rocking and torsional components in 

addition to the translational displacements. This type of interaction is strongly 

affected by the rigidity of the embedded foundation and the nature of the 

incoming seismic excitation consisting of non-vertically body and surface 

waves [13]. Generally, this kinematic interaction is strongly frequency-

dependent being influenced by the wavelength of seismic waves compared to 

the dimension of the foundation elements. In the case of a shallow foundation, 

kinematic interaction is usually negligible [14], whereas should be in principle 

more relevant for drilled shafts and caissons, owing to the foundation size and 

embedment [15]. 

On the other end, the presence of a deformable soil deposit surrounding the 

foundation produces a longer fundamental period of oscillation with respect to 

that of the same structure founded on a rigid base and part of the vibration 

energy is dissipated into the soil by radiation of waves along with hysteretic 

action [16]. This is the result of an inertial interaction between the soil and the 

superstructure. 

Although earthquake response of bridges should be evaluated with a direct 

analysis [2,17-19] capable of modelling the entire system composed of the 

superstructure, foundation and the supporting soil, to date the state of practice is 

usually restricted to a multistep approach [1,20,6,21,22], which makes use of 

the superposition theorem [23]. 

The so-called substructure method [24] consists of: (1) evaluating the free-

field response of the site, that is the spatial and temporal variation of the ground 

motion before building the structure; (2) solving the kinematic interaction, i.e. 

the response to incident seismic waves of the soil-foundation system with the 

mass of the superstructure set equal to zero; (3) determining the inertial 

interaction, that is the response of the overall soil-foundation-superstructure 
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system to forces associated with accelerations arising from the kinematic 

interaction. 

As a further simplification, kinematic interaction can be reduced to the 

evaluation of the motion at the base of the structure, disregarding the presence 

of the superstructure itself [25]. In the third step, kinematic motion is applied at 

the base of the superstructure in which the soil-foundation system is modelled 

with springs and dashpots (dynamic impedances) associated to each mode of 

vibrations [23]. 

A widely used approach to model the interaction between soil and deep 

foundations, for instance piles, is represented by the dynamic Winker model 

[26]. It consists of a series of independent horizontal or vertical springs and 

dashpots continuously distributed along the surface of the pile. The other 

extremity of the springs and dashpots are connected to the free-field where the 

soil response, computed independently, is imposed. This method reveals quite 

accurate, despite the modest computational effort, and permits nonlinear 

behavior of the soil to be easily incorporated. 

Gerolymos and Gazetas [27] developed a Winkler-type model for the 

seismic analysis of caisson foundations. Four types of springs and dashpots are 

used: distributed lateral springs and dashpots associated with the horizontal and 

rocking components of the motion of the caisson; springs and dashpots 

concentrated at the base of the caisson associated with the horizontal and 

rocking components of the motion. 

This model was extended to consider nonlinearity of the soil-foundation 

interface [28,29]. Tsigginos et al. [21] used the Winkler-type model to study the 

seismic response of the foundation-structure system. Varun et al. [30] 

conducted a series of numerical simulations with the finite element method and 

furnished very simple expressions of the springs and dashpots of the model. 

This solution was used by Cairo and Dente [16] to analyze both kinematic and 

inertial interaction of the soil-foundation-superstructure system. Zhong and 

Huang [31] extended the Winkler type model to the case of composite caisson-

piles foundations. The lateral response to external loads applied to caisson 

foundations was investigated by Karapiperis and Gerolymos [32] using 

nonlinear four-spring Winkler model.  

In this paper, the original model developed by Gerolymos and Gazetas [27] 

is used to elucidate some important aspects of the dynamic behavior of a bridge 

pier founded on caisson subjected to harmonic SH and SV shear waves. The 

effects of different wave patterns on the dynamic response of the foundation as 

well as the superstructure are discussed. 

 

2 FREE-FIELD SOIL RESPONSE 
Filtering out the details, that can be found elsewhere [33], we consider 

harmonic plane waves, which propagate in the x-z plane in the interior of a 
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visco-elastic homogeneous halfspace (Fig.1). The halfspace is characterized by 

the shear modulus G, Poisson’s ratio , mass density  and material damping . 

Shear waves, that induce displacements in the planes perpendicular to the 

direction of propagation, are separated into two polarized waves: SH waves, 

whose displacement has only a y component, and SV waves, whose 

displacement is only in the x-z plane. In this framework, the displacements do 

not vary with y and can be written as a function only of x, z and time t. 

Moreover, the equation of motion associated with SH waves is independent 

form the equations associated with SV waves. On the contrary, SV waves form 

a coupled system with the longitudinal P waves (which induce oscillations in 

the direction of propagation), and both of them give rise to two components of 

displacement depending one from the other. 
 

 
Figure 1.  Plane body waves propagating in a halfspace 

 

2.1 SH waves 

Introducing the complex shear wave velocity               , that takes 

into account the material damping occurring in the halfspace, for SH waves 

with angle of incidence SH measured from the vertical, the horizontal 

displacement in the y-direction is expressed as 

                                                                (1) 

with  the circular frequency of the motion,         the wave number, 

          and           the direction cosines,      , ASH and BSH 

the amplitude of the incident and reflected waves, respectively. At the free 

surface, z=0, the shear stress vanishes resulting in 

                                                                                                             (2) 
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                                                                                     (3) 

being 

                                                                                               (4) 

the amplitude of the SH wave propagating in the x-direction. The displacement 

amplitude at the free surface (z=0) follows 

                                                                                                         (5) 

and it is independent of the angle of incidence SH.  

It should be pointed out that the terms      and      represent, respectively, 

the horizontal and vertical components of the wave vector, which describes the 

direction of wave propagation. The term      (usually named apparent wave 

number) can be also written as 

                                                 
 

  
       

 

 
                                         (6) 

where the ratio between VS and mx defines the so-called apparent phase velocity 

c, that is the velocity at which the plane wave appears to travel along the x-axis. 

It is worth noting that the same relations are still valid in the case of a single 

surface soil layer as well as for the halfspace. Eq.(4) will be used to describe the 

free-field soil motion in the analysis of the kinematic interaction. 

The ratio (amplification function) of the absolute value of the displacement 

amplitudes at the top of a homogeneous layer and at outcropping bedrock 

(Fig.2) is plotted in Fig.3 as a function of the circular frequency normalized 

with the depth of the layer and the shear wave velocity of the soil. Different 

angles of incidence of SH waves are considered. As can be seen, the free-field 

soil response tends to decrease increasing SH. For SH=80°, the free-field 

motion is deamplificated into the soft layer. However, the fundamental 

frequency of the layer, i.e. the frequency at which the ground motion attains the 

maximum value, does not depend on the incident angle of the seismic waves. 

 

 
Figure 2.  Homogeneous soil layer overlying a rigid bedrock subjected to inclined SH waves 
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Figure 3.  Amplification function for the soil deposit in Fig.2 

 

2.2 SV waves 
The scheme used for describing SH waves can be followed for analyzing the 

propagation of SV waves. It is worth noting that, in the virtue of Snell’s law, the 

apparent phase velocity c (i.e. the apparent wave number) of both P and SV 

waves has to be the same. Therefore, the harmonic displacements caused by P 

and SV waves (Fig.1) have the form 

                                                          (7a) 

                                                         (7b) 

being          , with the angle of incidence SV measured from the vertical, 

and  

                                      

                                                 (8a) 

                                       

                                                  (8b) 

the amplitudes of the horizontal and vertical displacements associated with the 

waves traveling in the x-direction, respectively. In these equations, AP and ASV 

are the amplitudes of the incident P and  SV waves, respectively, BP and BSV are 

the reflected ones,          ,          and          are the direction 

cosines,         the wave number, where VP is the longitudinal wave 

velocity. The ratio between the shear wave velocity VS and VP can be written in 

terms of Poisson’s ratio as 
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Introducing the boundary conditions at the free surface of the halfspace (i.e. 

normal and shear stresses equal to 0), the amplitudes of the reflected waves can 

be expressed as a function of the incident waves. To study the kinematic 

response of the foundation to obliquely shear waves, the presence of the 

incident P wave is neglected, that is AP=0. Therefore, the following ratios are 

derived 
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                          (10b) 

It should be noticed that an obliquely incident SV wave generates both SV and 

P waves reflected only if SV is lesser than a critical angle given by 

                                                          (11) 

The critical angle depends only on Poisson’s ratio. For =1/3, cr=60°. 

Substituting in Eq.(8a) the ratios above derived (Eq.10), the horizontal 

displacement amplitude at the free surface (z=0) of the halfspace can be 

obtained 

       
                  

            
                   

                             (12) 

As can be noticed, the horizontal motion at the free surface of the halfspace 

induced by an obliquely incident SV wave depends strongly on the angle of 

incident SV [34,35].  
 

 
Figure 4.  Homogeneous soil layer overlying a rigid bedrock subjected to inclined SV waves 

 

The horizontal amplification function of the soil layer depicted in Fig.4 is 

discussed. In contrast to SH waves, the horizontal displacement at the free 

surface depends strongly on the incident angle of SV waves (Fig.5), especially 

when SV is greater than the critical angle cr. At the fundamental frequency of 

the layer, the maximum response of the soil is attained for waves inclined of 
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60°. In this case, as when SV=80°, a second mode of vibration appears to be 

much important, although it corresponds to a medium/high range of 

frequencies. 
 

 
Figure 5.  Amplification function for the soil deposit in Fig.4 

 

3 BRIDGE-SOIL MODEL 
A rigorous treatment of the seismic behavior of bridge piers would require 

evaluation of the inelastic response of the superstructure. However, an attempt 

is made herein to clarify important features of the dynamic response of a simple 

soil-superstructure model (Fig.6), generally used to analyze in a very simple 

manner single-pier bridges. It consists of a single-degree-of-freedom structure 

(SDOF) with lumped mass m, height h, elastic stiffness k and damping ratio s. 

The compliance of the base of the SDOF is represented by the horizontal 

impedance Shh, the rocking impedance Srr and the coupled impedance Shr, 

associated with each mode of vibrations of the rigid foundation. The kinematic 

motion FIM (foundation input motion) is directly applied at the base. 

In the following, the evaluation of the FIM, that is the kinematic response of the 

foundation, as well as the determination of dynamic impedances Sij of the soil-

foundation system are performed using the linear four-spring Winkler model 

proposed by Gerolymos and Gazetas [27]. 
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Figure 6.  Single-degree-of-freedom structure resting on soft soil 

 

3.1 Four-spring Winkler model 
The Winkler type model developed for the dynamic response of rigid caisson 

foundations consists of four types of linear springs and dashpots: two 

distributed translational and rotational impedances on the shaft of the caisson, 

two concentrated translational and rotational impedances at the base (Fig.7b). 

The spring coefficient kj at the shaft of the caisson (Kj at its base) takes into 

account the stiffness and inertia of the supporting soil and is therefore termed 

dynamic stiffness; cj (or Cj) is the dashpot coefficient which reflects the 

radiation and material damping generated in the system. As known, in the 

frequency domain  each dynamic impedance component j can be written in 

complex notation as 

)()()(  cikk                                         (13) 

The dynamic equilibrium of the shear forces and moments with respect to the 

base of the caisson is expressed in the usual matrix notation 

}{}]){[]([ 2 PuMK                                       (14) 

in which      and     are the impedance and mass matrices of the caisson 

referred to the base, respectively; {u} contains the horizontal displacement of 

the base and the rotation of the caisson; {P} is the load vector. 

The impedance matrix of the soil-foundation system adopted takes the 

following form [27] 
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being D the depth of embedment of the caisson. 
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(a)                                        (b) 

Figure 7.  Free-field soil (a) and bridge-pier on Winkler caisson foundation (b) 

 

Considering a rigid block foundation of mass m0 and mass moment of inertia 

about the center of gravity I0, the mass matrix results [27] 
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In general, the dynamic impedances of rigid caissons come indirectly from 

studies of the dynamic response of embedded footings [36,37]. Defining the 

impedance matrix of the embedded footing as 

                                  
        
        

                                        (17) 

the terms of which can be found in Appendix I, the lateral springs kj and 

dashpots cj of the equivalent Winkler model can be derived by equating the 

translational and rocking components of the impedance matrix in Eq. (15) with 

the corresponding terms in       [27]. The following expressions thus result 

                                                    
 

 
                                          (18a) 

               
 

 
              

  

 
  

 

 
            

 

 
               (18b) 

According to Tsigginos et al. [21], the impedances of the base of the caisson 

can be selected as the springs Kj and dashpots Cj coefficients of a surface 

foundation on halfspace or on a soil stratum underlain by a homogeneous 

halfspace (Appendix I) 
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                                                                                       (19b) 

Once all the springs and dashpots of the Winkler model are defined, the 

impedance matrix S referred to the top of the caisson can be obtained with a 

rapid coordinate transformation of Eq.(15), that is 

     
      
      

   
              

                       
     

          (20) 

 

4 KINEMATIC INTERACTION 
The seismic waves propagating into the soil impose forces and moments at the 

supports of the distributed springs and dashpots along the caisson height and at 

the concentrated impedances of the base (Fig. 7a), which lead to the following 

load vector [27] 
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where     and    
  are the free-field displacement and its derivative with 

respect to  measured upwards from the base of the caisson, respectively. The 

kinematic response of the caisson is obtained from the dynamic equilibrium 

equation (Eq.14), which gives the horizontal displacement of the base of the 

caisson and its rotation. The foundation input motion at the top of the caisson 

uko (along with rotation ko) follows. 

 

4.1 Solution for SH waves 
In the case of obliquely SH waves, Eq.(4) is used to calculate the free-field 

displacement and its derivative in Eq.(21). Assuming the lateral spring     and 

dashpot     to be constant into the layer considered, the translational and 

rotational components of the load vector in Eq.(21) can be written as  

                                                                                (22a) 

                                                                           (22b) 

in which 
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being u0 the amplitude of the horizontal motion at the free surface (Eq.5),      

and       the free-field displacement and its derivative at the base of the caisson, 

respectively. 

 

4.2 Solution for SV waves 
As previously done for SH waves, the amplitude of the free-field displacement 

     at the base of the caisson and its derivative       are determined for inclined 

SV waves, using Eq.(8a) in the case of a homogeneous soil layer. The following 

expressions result 
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The loading coefficients in Eq.(22) can be simply written as 
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4.3 Kinematic response factors 
Kinematic interaction is usually expressed in terms of the kinematic response 

factors, that quantify the dynamic response of the foundation to the propagation 

of waves into the surrounding soil. Denoting with uko the horizontal 

displacement at the top of the caisson and ko the rotational component, 

calculated with Eq.(14), the kinematic response factors are defined as the 

absolute values of the following normalized ratios 
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in which uffD is the free-field motion at the base of the layer and D the thickness 

of the layer. 

The kinematic response factors are thus calculated with the aforementioned 

approach. A square prismatic caisson foundation of width B=4 m and height 

D=6 m, embedded in a uniform elastic soil stratum overlying a homogeneous 

halfspace is considered. The mass mo of the caisson is neglected for sake of 

simplicity. The soil layer has shear modulus G=50 MPa, Poisson’s ratio =0.3, 

mass density =1.8 Mg/m
3
, internal damping =5%. 

 

 

 
Figure 8.  Kinematic response factor of the caisson to obliquely incident SH waves: (a) horizontal 

and (b) rotational components 
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Figure 8 shows the kinematic response of the caisson plotted versus the 

dimensionless frequency a0=B/2VS for obliquely incident SH waves. At low 

and medium frequencies, the kinematic response of the caisson uko is greater 

than the surface free-field displacement (Fig.8a), especially for vertically 

(SH=0°) or slightly obliquely (SH=30°) incident SH waves. This is caused by 

the rapid development of the rocking component ko in the same frequency 

range (Fig.8b). At higher frequencies, uko tends to attenuate rapidly and 

becomes minor than the movement of the ground, although significant values of 

the rocking motion remain. For SH waves inclined of SH=60° the rocking 

component (Fig.8b) develops gradually with frequency and the horizontal 

displacement is less pronounced, although remains above unity for all the 

frequency range (Fig.8a). 

 

 
Figure 9.  Kinematic response factor of the caisson to obliquely incident SV waves: (a) horizontal 

and (b) rotational components 
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By comparisons with previous results obtained by Cairo and Dente [16] for 

vertical S waves, taking into account the mass of the foundation would 

determine an increase of the kinematic factors. Only when the caisson is 

founded directly on a bedrock, the influence of the mass of the caisson has 

expected to be practically negligible. 

Kinematic response for SV waves is represented in Fig.9. For SV=0° and 

SV=30°, the kinematic factors show almost the same trend as for SH waves, 

although kinematic interaction reveals less important for SV=30° with respect 

to S waves vertically incident. On the contrary, SV waves inclined at 60° induce 

a very important kinematic effect in the foundation, also at very low 

frequencies, especially for the rotational component (Fig.9b). 

 

5 INERTIAL INTERACTION 
In the inertial interaction, the soil-foundation system is modeled through the 

dynamic impedances computed at the top of the caisson (Fig.6). By means of 

the coordinate transformation performed in Eq.(20), the following expressions 

are obtained 
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The response of the bridge pier to the foundation input motion with amplitude 

uk0 and k0 is thus evaluated solving the dynamic equilibrium of the idealized 

structural system sketched in Fig.6. The foundation has two degrees of freedom 

consisting of the horizontal displacement with amplitude u0 and rocking with 

amplitude 0. The elastic horizontal displacement of the top mass relative to the 

base mass has amplitude u. The total displacement amplitude of the 

superstructure results uhuus  00 . 

Formulating dynamic equilibrium of the mass of the superstructure and the 

translational and rotational equilibrium of the whole system yields 
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being It the total centroidal moment of inertia of the masses. 

These equations can be rearranged in matrix form as 
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in which mmm /0 . 

In the following, the dynamic response of a bridge pier subjected to the 

foundation input motion derived in the previous section is examined. The 

superstructure is idealized as a SDOF with lumped mass m=1200 Mg, moment 

of inertia I=64 m
4
, height h=30 m and damping ratio s=5%. For fixed-base 

response, the structure has undamped natural frequency s=7.01 rad/s that 

corresponds to 1.12 Hz. 
 

 
Figure 10. Inertial response of the structure versus the frequency ratio: base motion induced by 

SH waves 
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of the surface free-field displacement is presented in Fig.10 and Fig.11, as a 

function of the frequency ratio /s of the excitation frequency to the fixed-

base natural frequency of the structure. The solution disregarding the soil, i.e. 

for fixed-base structure, is also plotted. This corresponds to the well-known 

frequency response curve with the peak of 1/2s occurring at a tuning ratio 

/s=1. 

Under the base motions produced by SH waves, the peak responses (Fig.10) 

of the coupled soil-structure system under examination result greater than that 

of the same structure on a rigid base and occur at a lower frequency, 

corresponding to a more flexible system. The influence of SH is practically 

irrelevant, although vertical incident waves produce a slightly higher response 

of the structure. The curves appear also less broad, indicating that the damping 

is smaller. This is probably due to the slenderness of the superstructure and the 

relative dimensions of the foundation [15]. 
 

 
Figure 11. Inertial response of the structure versus the frequency ratio: base motion induced by 

SV waves 

 

The same tendency is observed for base motions provided by SV waves (Fig. 

11). However, for waves inclined at 60° the structure exhibits the maximum 

response, owing to a higher amplitude of the motion imposed at the foundation 

(Fig.9).  

In the high frequency range, the effects of inertial interaction are expected to 

be more significant as a consequence of the large values of the rocking 

component of FIM (Fig.8b and Fig.9b). These aspects are not shown herein, 

and can be found in Cairo and Dente [16]. 
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6 CONCLUDING REMARKS 
In this paper the effects of wave pattern induced by polarized shear waves 

propagating into an elastic halfspace on the dynamic response of a bridge pier 

supported by a rigid caisson are highlighted and discussed. Obliquely incident 

harmonic SH and SV waves are analysed and the elasto-dynamic solutions are 

used to evaluate the free-field motion within a single soil layer resting on a rigid 

bedrock or an elastic halfspace. Soil-structure interaction is solved with the 

substructure method and the four-spring Winkler model [27] is employed to 

represent the behavior of the soil-foundation system. The pier is modeled as a 

one-degree-of-freedom system consisting of a mass concentrated at the top of a 

visco-elastic beam. The steady-state response of the entire system excited by 

obliquely SH and SV waves is evaluated by decomposing the problem into 

kinematic and inertial responses. 

The obtained results permit the following remarks to be drawn: 

 The free-field response of the soil depends not only on the frequency of the 

motion but also on the angle of incidence  of the shear waves; 

 The more the direction of propagation of the SH waves deviates from the 

vertical, the more the amplification function decreases, over the whole 

range of frequency; 

 The amplification of the horizontal motion for incident SV waves is 

strongly influenced by the angle of incidence, being larger or smaller than 

for the vertical case; 

 The fundamental frequency of the soil layer does not vary with ; 

 The kinematic interaction for a rigid caisson foundation is characterized by 

a significant rocking motion, which leads to a lateral displacement of the 

base greater than the surface free-field movement in a wide frequency 

range; 

 The foundation input motion depends markedly on the wave pattern 

imposed by the free-field soil. The influence of inclined SV waves is more 

pronounced; 

 The soil deformability can play an important role in the kinematic response 

of the foundation as well as in the total response of the superstructure; 

 The fundamental natural frequency of the soil-structure system is always 

reduced with respect to that calculated ignoring SSI; 

 The peak response of the structure can be larger or smaller compared to the 

same fixed-base structure, depending on the compliance of the soil, the 

slenderness of the superstructure and the dimensions of the foundation. 

Although the used approaches are based on some approximate assumptions, the 

conclusions drawn in the present study can be of help in predicting the dynamic 

response of bridges on deep foundations, or in interpreting the results of more 

rigorous numerical studies. It should be pointed out that all the presented issues 

are rigorously valid under the assumption of linear elastic behaviour of the soil. 
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APPENDIX 
Translational impedance (rectangular base,  × ) 
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Coupled translational-rotational impedance 

     
 

 
       

 

Rotational impedance (rectangular base,  × ) 
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