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ABSTRACT: Incrementally launched bridges are very competitive for the 

construction of continuous prestressed or composite steel decks. During 

construction the static scheme of these bridges varies continuously, with the 

advancement of the deck above piers, producing temporary stresses rather 

different from those occurring in service life. Several of these bridges can be 

horizontally curved and the deck maybe composed of thin-walled sections: I-

girders or boxes. Moreover curved girders are always subjected to twisting 

moment, associated to bending, even for dead load. In these cases the influence 

of non-uniform torsion becomes sizable with respect to the Saint Venant 

torsion, modifying the state of tangential stresses in the cross section and 

introducing axial stresses due to the prevented warping. In this paper an analysis 

method for the evaluation of non-uniform torsion effects in curved prestressed 

concrete girder bridges, built by the incremental launching method, is proposed. 

The analysis is performed by the Hamiltonian Structural Analysis method, 

which leads to derive directly the solution via transfer matrices. In this paper the 

generalized technique of Reduced Transfer Matrices is applied to the launching 

stages of continuous girder bridges. The comparison between two different 

methodologies of construction is performed. In a first case the bridge is 

launched with its whole concrete box section, while in a second case only a U-

shape section without the upper slab is launched, in order to reduce the deck 

weight and the launching equipments. Results are shown on a case-study 

through envelope diagrams of internal forces and stresses for the entire 

sequence of launching. The influence of secondary torsion is addressed and the 

consequent variation of the state of stress is underlined. 

 
KEYWORDS: incremental launching, bridges, non-uniform torsion, curved 

beams, Hamilton duality system, HSA, Reduced Transfer Matrices 
 

1 INTRODUCTION 
Continuous girder bridges can be built through the incrementally launched 

method [1]. This technology is currently used both for concrete and steel 



2                              Effects of secondary torsion in curved prestressed concrete bridges 

girders, advancing deck segments over piers, driven from an abutment. In order 

to reduce the values of bending moment in the cantilever phases of 

advancement (fig. 1), a metallic nose is placed in front of the advancing 

segments. Although the more convenient section for the construction of these 

bridges is the box section thanks to its mechanical performance, its geometric 

efficiency and its effectiveness in resisting torsion and warping, nowadays I-

girders open section ( sections) are used too for bridge decks. Furthermore, 

this technique is applied to the construction of straight and horizontally curved 

bridges [2,3]. In curved bridges the effects of torsion are always coupled to 

bending, hence the construction stages must be analyzed taking into account 

twisting moment, shear force and bending moment. Moreover the cross section 

of these bridges is generally a thin-walled section where the effects of primary, 

secondary torsion and cross section distortion are always coupled.  

 

 

Figure 1.  Launching stages 

 

The study of thin-walled structures was initially carried out by Vlasov [4] for 

the case of open sections, introducing the theory of sectorial coordinates; 

afterwards important contributions were given by Dabrowski [5] while Bažant 

[6] presented a theoretical study developing different approaches for open and 

closed cross sections. Sedlacek [7] proposed a comprehensive theory for 

considering torsional warping and distortional effects in single and multi-cell 

box girders and decisive contributions were given in the book by Kollbrunner & 

Basler [8]. Kollbrunner and Hajdin [9] extended the Vlasov theory and the 

theory of folded plates through an analytical model which takes into account 

torsional and distortional warping for deformable thin-walled sections. A 

unified approach for analysing secondary torsion in beams with open and closed 

sections was proposed by Guo Zhong-heng [10] while other researchers, such as 

Bažant & El-Nimeiri [11] and Razaqpur & Li [12], implemented the theory of 

non-uniform torsion in finite element procedures in order to analyse curved 

girder structures with thin-walled sections. Nakai & Yoo [13] proposed a wide 

study on the analysis and design of curved steel bridges. Non-uniform torsion, 
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distortion and shear lag of concrete box sections of straight bridges were 

considered by Maisel [14] through a matrix method in which the governing 

differential equations of the problem are decoupled. Recently several studies try 

to take into account the shear deformation of the cross-section midline in 

warping torsion [15,16]. FEM models [17] and BEM models [18], based on the 

Secondary Torsion Moment Deformation Effect (STMDE), were developed for 

3D beams taking into account warping torsion. Methods based on finite and 

boundary elements may be computationally heavy when they take these 

phenomena into account, particularly for curved bridges, and often it is difficult 

in engineering practice to deal with those tools, especially when they are 

predefined closed numerical packages. In the case of construction by 

incremental launching this difficulty increases very much due to the number of 

stages to be analysed, making these numerical methods practically not suitable 

of application for current engineering design purposes. 

In curved bridges the contribution of non-uniform torsion is very significant, 

because bending and torsion are always coupled. In addition, the curved 

bridges, together with the torsion, may be suffering from distortion (loss of 

section shape) and from the phenomena related to the shear-lag. 

The analysis of thin-walled sections together to the advancing stage-

construction analysis makes necessary the evaluation of a large number of static 

schemes, one for each phase of progress, until reaching the final configuration, 

so that the designer is able to extract the envelope of the stress diagrams for 

evaluating the behavior of the bridge in all stages of advancement [1,2].  

For this reason in the present study, the solution of construction stages is 

obtained using the Hamiltonian Structural Analysis (HSA) method, based on an 

energetic approach and the definition of the Hamiltonian potential function [19]. 

The method is fast and useful for repetitive calculations, avoiding the 

construction of 3D FEM models, which may be computationally too onerous. 

The Hamiltonian Structural Analysis (HSA) method, for one-dimensional 

structures in 3D-space, starts from the principle of stationary total potential 

energy through the Legendre transformation, which is applied to the total 

potential energy density. The total potential energy density represents the 

Lagrange function which is transformed into a Hamiltonian function, that is a 

mixed energy density. The canonical Hamiltonian system, which expresses the 

solution system of the elastic problem, is expressed through differential 

equations of the 1st order and the solution of the canonical dual system is a 

mixed state array of displacements and stress resultants, associated to the 

appropriate boundary conditions. Moreover the fundamental matrix of the 

solving system coalesces to the transfer matrix of the structure. Hence the 

transfer matrix method can be applied as powerful tool to avoid complex and 

time consuming solving procedures.  

The HSA method can be applied to thin-walled structures by introducing the 

appropriate kinematical degrees of freedom and the corresponding compatibility 
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equations [19]. Hence non-uniform torsion for rigid cross-sections as well as 

distortion (deformable cross section), shear lag, temperature distributions inside 

the sections and other problems can be solved directly, by finding the 

expression of the Hamiltonian function and by approaching the variational 

formulation. This is a convenient method which maintains a solving system 

with a number of equations always double the number of kinematical degrees of 

freedom introduced in the formulation.  

The HSA method can be seen in the frame of a general method of analysis of 

physical systems, developed by Zhong [20], which is based on the analogy 

relationships between structural mechanics and optimal control. In structural 

mechanics the field compatibility equations, together with field equilibrium 

equations, form a natural duality system that can be directly obtained from the 

Hamilton function, termed as density of mixed energy. In fact the Hamilton 

form of dual equations in structural mechanics and the dual equation system in 

optimal control theory are analogous to each other mathematically. The elastic 

problem can be seen on the dynamical point of view when the coordinate is the 

time and on the static point of view, when the coordinate is spatial, like the 

continuous abscissa of the structural axis joining cross section centroids of a 

continuous body. 

In the following HSA method is presented for the solution of horizontally 

curved beams with open or closed thin-walled cross section having  shape or 

one-cell box section. When the angle of twist per unit length is not constant, the 

Saint-Venant theory of torsion is not reliable in thin-walled sections and the 

evaluation of non-uniform torsion is essential; in this connection additional 

axial stresses rise in web and flanges of cross section due to warping. 

Parametric analysis of continuous curved bridges through HSA is reported in 

[21]. Cross section deformation and shear lag have to be considered associated 

to torsion [19] for evaluating the variations of axial stresses with respect to the 

Saint-Venant theory. The presence of stiffeners and bracing inside cross 

sections limits distortional effects, while rigid diaphragms can increase axial 

stresses due to torsional and distortional warping.  

In this paper a study of the construction stages of a prestressed concrete 

bridge, horizontally curved, with a closed box section is presented. Two 

different and alternative construction methodologies are examined. In the first 

the full box is launched over span lengths of 46 m, studying the effect of the 

geometric curvature and of the non-uniform torsion in the case of thin-walled 

box sections. Being a prestressed concrete deck with the full section very heavy 

and with expensive launching technology required together with an onerous 

temporary prestressing. Alternatively, to reduce the problems of pushing forces 

and the weight of the cross section, it is considered a second hypothesis of 

construction in which only a reduced U-shape section is advanced, concreting 

the upper slab after the launch is completed. In this case, an open section occurs 
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and its stiffness is significantly lower than the previous case of box section, 

being not possible to keep the span length to 46 m. Thus it was evaluated the 

possibility of using intermediate temporary piers, reducing the span length to 

the half and consequently reducing the equipment and technology necessary for 

launching and the temporary prestressing to be adopted in the launching phase. 

It should of course carefully consider the additional costs of temporary piers 

and the largest number of intermediate supports, which should, however, be 

offset by the simple implementation of the pushing force and of the provisional 

prestressing. In both cases torsion (and more precisely non-uniform torsion) 

plays a very important role because in the first case it acts on a closed section 

which is complete and with optimum mechanical properties (definitive section 

and longer spans), while in the second case acts to a thin walled open section, 

much more sensitive to the secondary effects of non-uniform torsion (temporary 

open section and shorter spans). 

The solution of incrementally launched straight bridges was developed by 

Rosignoli [22] through the transfer matrices (TMM). Sasmal et al. [23] 

extended the methodology and assessed the interaction between the nose and 

the deck. Recently, the problem of nose optimization has also been studied by 

Fontan et al. [24], with advanced optimization techniques. Other works 

extended this analysis methodology to curved bridges, evaluating the global 

behavior [25] but only for primary torsion. The authors demonstrated that TMM 

can be considered as a special case of the more general Hamiltonian Structural 

Analysis (HSA) method. A parametric study of curved beams with various open 

and closed cross-sections is presented in [25] and a study of non-uniform 

torsion effects on continuous bridges built by incrementally launching, with 

different cross sections, is given in [26]. This method is applied here to the 

solution of the incremental launching stages, taking into account the effects of 

non-uniform torsion. The result is the formulation of a theory of a generalized 

beam that allows the designer to calculate the stress state in the construction 

phases, which are also the most complex. 

 

2 SOLUTION OF CURVED BRIDGES WITH NON-UNIFORM 

TORSION BY THE HSA METHOD 
In this section the HSA method is applied to girder bridges curved in the plane, 

taking into account secondary torsion. The general theory can be found in [19].  

For a horizontally curved beam (figure 2), whose axis lies on a horizontal plane, 

in the generic section of curvilinear coordinate s, with the local coordinate 

system given by the Frenet unit vectors i1, i2, i3 (respectively along the normal, 

binormal and tangent axes to the curve) placed in the cross-section centroid (G), 

it is possible to define an array u(s) and an array Q(s) containing the 

displacement and internal force components: 
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   
T T

2 1 3 3 2 1 3 3( ) , , , ;   ( ) , , ,s u s V M M B    u Q        (1) 

where u2 is the vertical displacement, 1 the bending rotation, 3 the angle of 

twist around the shear centre (C), ζ3 the warping intensity function, V2 the shear 

force, M1 the bending moment, M3 the twisting moment defined respect to the 

shear centre. B3 is the internal force related to warping, called bimoment (or 

warping moment). 

In non-uniform torsion of thin walled curved beams the total twisting 

moment M3 consists of a contribution from Saint Venant torsion Md and of a 

contribution from the torsional warping moment Mω which is the derivative of 

bimoment B3: 

3 31
3 d

d dB
M M M GJ

ds R ds


  
     

                             
(2) 

The field compatibility and equilibrium equations of the curved beam with non-

uniform torsion are the following: 
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      
 

       (3a,b) 

where E is the Young elastic modulus, G is the shear modulus, R is the constant 

curvature radius, m3 is the distributed torque, 2 is the shear factor, A is the 

cross section area, J1 is the moment of inertia, JC is the torsional polar moment 

of inertia of cross section and Iω is the torsional warping constant, both defined 

with respect to shear centre: 

2

C wJ r t ds  ,  2   w

A

I t ds                               (4a,b) 

in which  is the sectorial area (or normalized sectorial coordinate) of thin-

walled open or closed sections, r is the distance from the shear centre to the 

tangent to the midline of the thin-walled section profile, t is the thickness of the 

section wall and sw is the curvilinear coordinate along the profile midline. For 

one-cell rectangular or trapezoidal box sections, normalized sectorial coordinate 

closed is obtained cutting the closed cell and considering the warping function of 

the derived open section open, detracting the contribution of the shear flow, 

according to the following relation: 
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0

ws

w
closed open

dsJ

t
  

 
                                       (4c)  

where J is the torsional constant for closed sections and  is the double of the 

area closed by the profile midline. 

In eq. (3a) M1/EJ1, M3/GJC and B3/EI are respectively the bending, torsional 

and bimoment mechanical curvatures while in eq. (3b) p2 is the distributed 

vertical load.  In eqs. (3) constant κ is defined by: 

1 ;    
1

C

C

J J
J

J
  


                                      (5) 

For box sections, J is the Bredt torsional constant and it is not much smaller 

than JC; by contrast for open sections, the Saint-Venant torsional constant J is 

much smaller than JC, being J/JC → 0. The value of the shear parameter  

distinguishes the behaviour of different kinds of cross-section:  for box 

sections and < 1 for open sections. This parameter is a discriminant of cross 

section behaviour in the unified theory, being κ→0 and J/JC → 1 for compact 

sections. 
 

  

 

Figure 2. Curved continuous girder bridge, generic J-K span and box cross section with local 

axes. 

 

In the frame of HSA [19], the equilibrium and compatibility equations (3) 

maybe compacted in matrix form through a canonical Hamiltonian dual system 

of 1
st
 order differential equations. 
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where B is a geometric gradient matrix of displacements (referred to the 

compatibility equations), E
-1

 is the diagonal flexibility matrix containing the 

mechanical constants (i.e. the inverse of the stiffness matrix) for a beam having 

constant cross-section with an axis of symmetry along i2. R is a matrix that 

characterizes a fictitious elastic soil and in this case it contains the parameter 

linked to the Saint-Venant torsion.  

In the previous equations fe(s) = (p2(s), m1(s), m3(s), 0)
T
 is the array of 

distributed external loads and qe(s)= (0, 0, 0, 0)
T
 is the array of imposed strains 

(e.g. imposed curvature induced by a temperature gradient), being the latter a 

null array in this case. H is a mixed energy density function (the Hamiltonian 

function) linked to the total potential energy density of the beam, with several 

important properties. By collecting fe(s) and qe(s) in a mixed generalized 

external action array and by collecting u(s) and Q(s) in a mixed state array 

de(s) = [fe
T
(s), qe

T
(s)]

T
   ;    z(s) = [u

T
(s), Q

T
(s)]

T
                    (7) 

the Hamiltonian function assumes the form of a sum of two terms, one 

quadratic and one linear: 

1
( ) ( ) ( ) ( ) ( ) ( )

2
T T

eH s s s s s z z A z d z                         (8) 
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         (9) 

Eq. (6) can be expressed by the following canonical dual symplectic system of 

1
st
 order differential equations: 
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 
( ) ( )

( ) ( )e

d s dH
s s

ds d
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z z
J J A z d

z                            
 (10) 

where J is the skew symmetric symplectic operator and I is the 4×4 identity 

matrix 

 
  
 

0 I
J

-I 0
                                               

 (11) 

The solution of eq. (10) is given by the fundamental matrix C(s) of the 

homogeneous system and it expresses the relation between the state array in s = 

0 and the one in the generic section of abscissa s, in the following form: 

( ) ( ) (0) ( )s s s z C z N                                       (12) 

where C(s) depends on the geometrical and mechanical characteristics of the 

beam and N(s) expresses the effects of external actions along the beam axis. For 

a horizontal plane curved beam the expression of the 8×8 fundamental matrix 

can be found by the exponential matrix 

     
2 3

( ) ( ) 2! 3! ... ! ...
n

s s s s s s n       C exp J A I JA JA JA JA    (13) 

while the effects of external actions (distributed loads and possible imposed 

strains on the beam) can be taken into account by the array N(s): 

0

( ) ( ) ( )

s

s s d    e
N C J d

 

                             (14) 

Once the transfer matrix C(s) has been defined (and calculated via precise 

integration method [20]), it is possible to expand it by adding one more column 

and one more row, in order to include array N(s) and the general expression 

(12) can be written in a compact form: 

T

( ) ( )( ) (0)
( ) ( ) (0)

1 11

s ss
s s

    
      
    

C Nz z
S F S

0
                (15) 

where S(s) is the expanded state array and F(s) is the expanded transfer matrix 

for the generic section s. Therefore, the relation between the state arrays of two 

subsequent sections J and K can be expressed by the 9×9 matrix FJK : 

K JK J
S F S                                                (16) 

If a circular curved beam on rigid radial supports with constant curvature radius 

R is considered, the curvilinear coordinate of the generic section is s = R and 

L=Rtot the total beam length from section A to section N at the end of the beam, 

with spans each of length lJK=RJK between two subsequent supports J and K 

(figure 2).  

In each section a point matrix PI can be defined to take into account 

concentrated discontinuities. The 9
th
 order matrix PI is composed of a 8

th
 order 
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identity matrix and of a 8
th
 order column containing the terms of concentrated 

discontinuities: 

 I 2 1 3 3 2 1 3 3

8
,    

1

T

T u V M M B
 

          
  

I z
P z

0
       (17) 

being I8 a 8×8 identity matrix. By considering discontinuities, the state array SN 

at the end section of the curved beam can be expressed as a function of the state 

array SA at the initial section, by the recursive formula: 

N N N-1 B

N A A N+1 N-1 N N-2 N-1 A A A
... S F S P F P F P F P S                   (18) 

The system of eq. (18), which is valid for the whole structure, can be solved by 

imposing the boundary conditions at the ends of the beam, by partitioning the 

coefficient matrix of the 8
th
 order.  

 

 

Figure 3.  Bearings on piers and diaphragms locations during deck advancement 

 

When discontinuities are unknown as it occurs over supports of a continuous 

beam, equation (17) contains some redundant unknowns (support reaction 

discontinuities V2, M3 and B3), so the system (18) can be solved by 

implementing the so-called reduced transfer matrix method [26]. The aim of 

this method is to find a reduced solving system by excluding the unknown 

variables and by identifying the variables which are continuous along the beam. 

In fact each matrix PKFJK contains redundant unknowns. By considering the 

case of free warping over piers, each matrix FJK can be partitioned by separating 

known variables from unknowns, defining arrays KJ = (u2 3)J
T
 and KK= (u2 

3)K
T
 of known variables at support sections and arrays UJ = (V2 M3)J

T
 and UK = 

(V2 M3)K
T
 of unknown variables. Continuous variables upon each support can be 

placed in arrays zRJ = (1 3 M1 B3)J
T
 and zRK = (1 3 M1 B3)K

T
.  

The equilibrium and compatibility conditions to be fulfilled at the left and 

right sides of an internal support are the ones linking the continuous variables 

collected in the array zRJ of the i-th span, to those of the array zRK of the (i-1)th 

span (e.g. equal values of rotations and/or moments at left and right sides of 

supports). Under these hypotheses the solving system of a span J-K can be 

rearranged: 

Internal diaphragm Stiffner

J I K
a

b
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11 12 13 14 JK

21 22 23 24 JK
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    

     
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F F F Fz z

0 0 0

                        (19) 

From the first row of equation (19), by solving it with respect to the unknown 

elements UJ, 

 1

J 12 K 11 J 13 J 14

   
R

U F K F K F z F                             (20) 

while, from the third row of eq. (19), one obtains 

 

K JK J JK
 

R R N
z G z G                                     (21) 

in which 

 

1

JK 33 32 12 13

 1

JK 31 J 32 12 K 11 J 14 34





 

    
N

G F F F F

G F K F F K F K F F
                (22) 

By inserting GNJK and GJK into a reduced transfer matrix FRJK  

 

JK JK

TJK 1

 
  
 

N

R

G G
F

0
                                     (23) 

and by considering the reduced state array SR = (1 3 M1 B3 1)
T
, a compact 

expression of equation (21) can be found, obtaining the reduced system 

K JK J


R R R
S F S                                             (24) 

where FRJK is the 5×5 reduced transfer matrix of the J-K segment between two 

subsequent supports. Elements of the reduced transfer matrix FRJK are obtained 

directly as a combination of those of transfer matrix FJK. In this way, if the 

entire continuous beam between A and N is considered, the reduced solving 

system is: 

N A,N A,N N-1,N N-2,N-1 A,B A
... 

R R R R R R R
S F S F F F S                        (25) 

This reduced system can be solved by imposing the boundary conditions at 

joints A and N (e.g. known values of bending moments and bimoment). After 

the reduced system is solved, all values of bending moment, bimoment, rotation 

and warping for every support can be found. Finally, by substituting the values 

of SRJ and SRK in equation (24), the continuous beam can be finally solved by 

defining the complete system of equation (18) and the state arrays SJ and SK can 

be found for each girder segment. 

This solution is correct when warping is free along the entire deck; actually, 

diaphragms which prevent torsional warping can be placed at intermediate 

sections and this complicates the solution of the continuous beam during 

launching because the position of the diaphragms varies at each step of 

advancement (fig. 3). In the diaphragm section warping is prevented, so the 
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variable 3 is nullified and bimoment B3 is an unknown variable. In the general 

situation shown in figure 3a, the reduced transfer matrix between supports J and 

K has to take into account the presence of the intermediate section I with the 

diaphragm, in which the value of bimoment is unknown. To do this, it is 

sufficient to divide the reduced matrix of the span J-K into two sub-matrices, 

whose elements are reordered depending on the known, unknown and 

continuous variables at the extremes J, I and K. In this case in fact, the sub-

arrays of eq. (19) become: KJ = (u2 3)J
T
, KI = (3)I

T
, KK= (u2 3)K

T
 for known 

variables, UJ = (V2 M3)J
T
, UI = (B3)I

T
, UK = (V2 M3)K

T
 for unknown variables and 

zRJ = (1 3 M1 B3)J
T
, zRI = (u2 1 3 V2 M1 M3)I

T
, zRK = (1 3 M1 B3)K

T
 for 

continuous variables. In this way the reduced matrix of span J-K is given by the 

product of sub-matrices of segments I-K and J-I: 
JK IK JI


R R R
F F F , each sub-

matrix referring to the continuous variables of the extremes J, I and K. Once the 

unknown variables at J and K sections are found solving eq. (25), values of 

bimoment at the left and right sides of the I section can be evaluated too. The 

reduced transfer matrix of the span J-K has to be divided in two sub-matrices 

till the diaphragms are placed over piers (position of figure 3b), when the span 

coincides with the mutual distance of diaphragms. 

The state of stress of cross section is due to the following internal forces:  

1) axial force Nx (mainly due to temporary prestressing), longitudinal 

shear force V2, longitudinal bending moment M1 (inclusive of bending 

due to prestressing) and total twisting moment M3; 

2) torsional warping (bimoment B3 and secondary torsion M); 

Summarizing the contributions to the longitudinal axial stress, in a generic fibre 

of cross section, the following relation is established: 

1

1

+x
x

N BM
y

A I I





                                         (26) 

where y the generic distance of the concrete fibre from cross section centroid.  

In the same way, the value of tangential stress in the web can be evaluated 

through the following expression: 

32 2

1

xy

M M SV S

I t t I t

 



   


                            (27) 

which is valid for closed sections and where t is the thickness of the considered 

concrete fibre inside cross section (in this case it is the web thickness); S2 is the 

first moment (static moment) related to the concrete fibre and defined as per 

Jourawski theory;  the double of the area of internal box hollow (Bredt 

theory); S the first moment (static moment) of sectorial areas with respect to 

shear centre C. For open sections the value of tangential stress due to Saint-

Venant theory has to be substituted to that of Bredt theory. 

Figure 4 shows the stress state due to torsional warping. 



Arici & Granata                                                                                                               13 

 

 
Figure 4.  Typical stress state due to torsional warping 

 

3 CASE-STUDY 
The analysis of the launching stages of a bridge of four spans of equal length lJK 

= 46 m is proposed. The bridge is horizontally curved with a constant radius R = 

200m, total length of the deck Ltot = 184 m. Two different construction 

sequences are supposed. In the first case (a) it will be assumed that the bridge is 

pushed with its entire box section over the four spans ; consequently the nose 

length is fixed equal to ln = 28 m (about 60% of the span length). In the second 

case (b) it will be assumed instead that the bridge is pushed with only the U-

section of the lower body, without the upper slab, using four temporary piers 

placed in the middle of the spans, in order to lead to 8 spans , for a reduced 

length lJK = 23 m and a nose length ln = 14 m. This in order to compare and 

optimize the effects of the launch with the two different construction methods, 

evaluating the behavior of the closed and open sections and to compare the 

launch of the entire deck section (which assumes the use of very onerous work 

equipment) with that of reduced section, involving reduced weight and 

equipment. 

All construction phases were analyzed using the methodology described 

above. The geometric properties of the bridge are shown in figure 5 and the 

numerical values are given in Table 1 for the two sections considered. 

In both cases stiffeners occur with spacing of 6 m along the beam in order to 

reduce the effects of cross section distortion and to restrict the distortional axial 

stress under the 5% as indicated in some guidelines for curved bridges. In 

addition, rigid diaphragms that prevent torsional warping are placed in those 

sections that, in the final scheme, will be placed over the piers and abutments. 

In this analysis the effect of shear-lag has been neglected even if in the box or Π 

section it may increase the values of axial stresses in the areas of flanges close 

to webs.  
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Figure 5.  Geometric properties of the bridge [m] 

 

In this study only the effect of non-uniform torsion will be taken into account, 

thus neglecting distortion (loss of shape) and shear-lag. Results are reported 

through envelope diagrams of internal forces and stresses. The values of shear 

force V2 and total twisting moment M3 (primary Md and secondary M) are 

useful for the evaluation of shear stresses, while bending moment M1 and 

bimoment B3 allow the evaluation of the maximum and minimum values of 

axial stresses. This is necessary to perform the safety checks of deck sections 

against cracking and to design the temporary prestressing of launching [1]. For 

the sake of brevity, diagrams of primary torsion Md and secondary torsion M  

are not reported, even though they can be derived from the analysis as well as 

the total moment M3 and the bimoment B3. 

Table 1.  Geometric properties of the cross sections considered 

 

46 m 46 m 46 m 46 m

R
 =

 2
0
0
 m

1
2
 m

ba

7.00

3
.0

0

12.00

0.35

0
.2

5
0
.3

0

7.00
2
.7

0

0.35

 

  Box 

section 

(case a) 

U-shape 

section 

(case b) 

Nose 

E [MPa] 36000.0 36000.0 210000 

G [MPa] 15000.0 15000.0 87500 

p2 [kN/m] 195 90 45 

A [m
2
] 7.065 3.460 0.465 

J1 [m
4
] 9.942 2.445 0.226 

J [m
4
] 20.416 0.106 0.001 

Jc  [m
4
] 30.418 - - 

Iω [m
6
] 11.985 18.706 2.068 

κ  0.329 1 1 

ye [m] 1.159 1.901 0.800 

yi [m] 1.841 0.793 0.800 

ωe [m
2
] 2.018 3.262 3.900 

ωi [m
2
] 2.657 5.301 3.900 
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Figure 6 shows an example of the superposition of bending moment and 

twisting moment diagrams for several launching steps over a span of the bridge. 

The related envelope diagrams are obtained by repeating the bridge analysis for 

steps of launching increment of 1 m and shifting all diagrams obtained in the 

final configuration of the bridge, giving the maximum and minimum values of 

internal forces in every section for the entire launching sequence. 
 

 
Figure 6.  Example of superposition of internal force diagrams for several launching steps of a 

span and for the deck with steel I-girders 

 

3.1  Whole prestressed box section 
Figure 7 shows the envelope diagrams of shear force V2, bending moment M1, 

total twisting moment M3 and bimoment B3 in the case of the box concrete cross 

section. The envelope diagrams are obtained by repeating the analysis of the 

bridge for steps of advancement of 1 m and translating all the diagrams obtained 

in the final configuration, finding the maximum and minimum values of the 

stresses in each section for the entire launching sequence. The beam segment 

over the length of 184 m is the one related to the steel nose. It is worth noting 

that the maximum values of bending moment and twisting moment are placed 

in correspondence of the first segments launched, from 138 to 184 m. The 

values of bimoment are low along the entire deck, with maximum values in 

correspondence of the nose, because the closed section is generally less 

sensitive to non-uniform torsion than the open section (I-girders), used for the 

nose. Please note the peaks of bimoment over pier sections, which are also the 

sections in which the rigid diaphragms are placed during the advancement, with 

the highest value obtained in the joint section between the nose and the deck.  

Figure 8 shows the diagrams of the axial stresses given by the sum of the effects 

of bending moment and bimoment, obtained by applying eq. (26) without 

prestressing. In Figure 8, the last segment related to the nose has been 

eliminated, thus showing only the stress diagram on the concrete deck, which is 

useful for the design of temporary prestressing in the early stages of 

construction. The maximum values of stress are placed in the most forwarded 
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part of the bridge (front zone), with high values of tensile stresses for the entire 

deck length and similar values at the intrados (i) and extrados (e) of cross 

section. 
 

 

 
Figure 7. Envelope diagrams for box girder: shear force, bending moment, total twisting moment 

and bimoment 

 

In curved bridges, the presence of internal prestressing tendons generates a 

distributed transverse force P/R, being P the value of the prestressing force 

[27,28]. When these transverse forces are eccentric with respect to the shear 

center, a significant value of twisting moment has to be added. Centered 

prestressing generates instead a limited value of torsion, attributable only to the 

eccentricity between the centroid of tendons and the shear center, which 

generally can be neglected. In addition, the transverse forces acting to the deck 

generate a beneficial "arch effect" in the horizontal plane (if the end restraints 

are able to prevent the transverse displacements), and this effect gives a limited 

value of the axial stress, which can be seen as a secondary effect of centered 

prestressing in curved bridges. Axial stresses due to bimoment contribute for 

about 5-8 % to the total value, confirming that in this case non- uniform torsion 

may be significant only in the areas close to diaphragms. Applying eq. (27) 

tangential stresses due to torsion can be obtained and combined with those due 

to shear, in order to verify if the transverse reinforcement designed for the 
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service loads are appropriate also in construction stages. Reinforcements for 

prestressed concrete box girders are evaluated in [29] taking into account the 

interaction between longitudinal shear, torsion and transverse bending. 

 

 
Figure 8.  Envelope diagrams of axial stresses at the intrados and extrados of box girder 

 

3.2  U-shape prestressed open section 
For the case of the deck construction in two phases, with the advancement of 

the U-shaped section and the later cast of the upper slab, the launching steps are 

here analyzed for a comparison with the previous results, in which the whole 

box section is launched. In this second case, temporary piers reduce the span 

length to the half of the previous ones. Incrementally launched U-shaped girders 

are nowadays frequently built and they have been studied recently in [30]. 

Figure 9 shows the envelope diagrams of internal forces. The incidence of 

bimoment is evident here, the open section being much more sensitive to the 

effects of non-uniform torsion. The shape of the envelope diagrams of twisting 

moment and bimoment are very different from that of the corresponding 

situation depicted for the previous case in figure 7. This is due to the greater 

number of spans and to the U-shaped open section, more sensitive to non-

uniform torsion. Although the total values are significantly diminished due to 

the reduction of weights and lengths of launch, the incidence of torsion and 

bimoment are very evident throughout the entire deck, for any launching stage. 

The negative peak of bending moment due to the cantilever phases is also very 

pronounced, in the sections between 161 m and 184 m. 
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Figure 9. Envelope diagrams for U-shaped girder: shear force, bending moment, total twisting 

moment and bimoment 

 

Figure 10 shows the envelope diagrams of the axial stresses. The high value of 

tensile stresses at the lower edge of the section indicates that prestressing 

reinforcement has to be lowered, giving more compression at the bottom fiber.  

On the other hand in the case of the U-shaped section, the shear center lies 

below the bottom slab, indicating that temporary prestressing has to be lowered 

as much as possible, even though the total value of prestressing is expected 

lower than in the previous case.  The contribution of non-uniform torsion is 

significant, with a percentage of axial stresses due to bimoment varying in the 

range 10-20 %.  

The shape of the envelope diagram of fig. 10, which turns out to be much 

more rugged than the previous case of fig. 8, indicates that the contribution of 

the stresses due to bimoment in slabs, overlaps with that of the bending moment 

appreciably. 

 

 
Abscissa [m] 

S
h
e
a
r 

fo
rc

e
  
V

2
 [
M

N
] 

B
e
n
d
in

g
 m

o
m

e
n
t 
 M

1
 [
M

N
m

] 

T
w

is
ti
n

g
 m

o
m

e
n
t 
 M

3
 [
M

N
m

] 

B
im

o
m

e
n
t 

 B
3
 [
M

N
m

2
] 

Abscissa [m] Abscissa [m] Abscissa [m] 

 
Abscissa [m] 

S
h
e
a
r 

fo
rc

e
  
V

2
 [
M

N
] 

B
e
n
d
in

g
 m

o
m

e
n
t 
 M

1
 [
M

N
m

] 

T
w

is
ti
n
g
 m

o
m

e
n
t 
 M

3
 [
M

N
m

] 

B
im

o
m

e
n
t 

 B
3
 [
M

N
m

2
] 

Abscissa [m] Abscissa [m] Abscissa [m] 



Arici & Granata                                                                                                               19 

 

Figure 10. Envelope diagrams of axial stresses at the intrados and extrados of the U-shaped girder 

 

From a comparison of provisional prestressing in the two cases examined, it is 

shown that the maximum tensile stress in the current zone is about 7.0 MPa for 

the box girder and 20.0 MPa for the U-shaped deck. In the first case a centered 

prestressing with a maximum of 20 tendons (made of 15 strands 0.6”) has been 

considered, while in the second case a bottom prestressing (eccentrically 

applied) with a maximum of 15 tendons has been considered. 

 

4 CONCLUSIONS  
In this study the analysis of construction stages of concrete curved 

incrementally launched bridges was presented, with the aim of evaluating the 

effects of secondary torsion in two different methodologies of launching. In the 

first one the bridge deck is launched with its whole box section while in the 

second case, the deck is launched with a partial section, U-shaped, without the 

upper slab. The second hypothesis leads to the need of reducing the span 

lengths through the use of provisional piers. The purpose is to compare the two 

different procedures and the consequences on the design phase. In the case with 

the whole box section, the launching equipment is very onerous and provisional 

prestressing is highest. In the case of U-shaped section, the additional cost of 

temporary piers has to be considered but a reduction of launching equipment 

and temporary prestressing occurs.  

The analysis was addressed by the Hamiltonian Structural Analysis method, 

providing a unified theory of the generalized beam for open and closed thin-

walled sections. The proposed method is particularly effective in the case of 

incrementally launched bridges for the speed of analysis of a large number of 

static schemes that follow one another during the advancement, obtaining 

envelope diagrams of internal forces and stresses.  

The influence of secondary torsion in the two cases was evaluated. Although 

in international codes the significance of torsional warping is generally 

restricted to open sections, Murìn et al. [17] and the authors [21] found that the 
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effects of secondary torsion can be important also in beams with closed 

sections. For the case-study analysed in the present paper, incrementally 

launched bridges with box sections show a percentage of axial stresses due to 

bimoment up to 5-8% in the areas close to the diaphragms. By contrast in U-

shaped sections the contribution of bimoment to axial stresses rises to 10-20 %.  

The evaluation of axial and tangential stresses is of particular importance for 

establishing the temporary launching prestressing and the transverse 

reinforcements. 
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